Problèmes de transmission sur des réseaux polygonaux pour des systèmes d'EDP

Denis Mercier

Annales de la Faculté des sciences de Toulouse : Mathématiques (2001)

  • Volume: 10, Issue: 1, page 107-162
  • ISSN: 0240-2963

How to cite

top

Mercier, Denis. "Problèmes de transmission sur des réseaux polygonaux pour des systèmes d'EDP." Annales de la Faculté des sciences de Toulouse : Mathématiques 10.1 (2001): 107-162. <http://eudml.org/doc/73536>.

@article{Mercier2001,
author = {Mercier, Denis},
journal = {Annales de la Faculté des sciences de Toulouse : Mathématiques},
language = {fre},
number = {1},
pages = {107-162},
publisher = {UNIVERSITE PAUL SABATIER},
title = {Problèmes de transmission sur des réseaux polygonaux pour des systèmes d'EDP},
url = {http://eudml.org/doc/73536},
volume = {10},
year = {2001},
}

TY - JOUR
AU - Mercier, Denis
TI - Problèmes de transmission sur des réseaux polygonaux pour des systèmes d'EDP
JO - Annales de la Faculté des sciences de Toulouse : Mathématiques
PY - 2001
PB - UNIVERSITE PAUL SABATIER
VL - 10
IS - 1
SP - 107
EP - 162
LA - fre
UR - http://eudml.org/doc/73536
ER -

References

top
  1. [1] Agmon ( S.). — The coerciveness problem for integro-differential forms, J. d'Analyse Math., 6, 182-223,1958. Zbl0119.32302MR132912
  2. [2] Agmon ( S.), Douglis ( A.) and Nirenberg ( L.). — Estimates near the boundary for solutions of elliptic partial differential equations satisfying general boundary conditions I, II, Com. on Pure and Applied Math., 12, 1959, 623-727; 17, 1964, 35-92. Zbl0093.10401
  3. [3] Agranovitch ( M.S.) and Vishisk ( M.I.). — Elliptic problems with a parameter and parabolic problems of general type, Russian Math. Surveys, 19, 1964, 53-157. Zbl0137.29602MR192188
  4. [4] Ciarlet ( P.G.). - Plates and junctions in elastic multi-structures, RMA14, Masson, Paris, 1990. Zbl0706.73046MR1071376
  5. [5] Conca ( C.), Planchard ( J.), Thomas ( B.) et Vanninathan ( M.). - Problèmes mathématiques en couplage fluide-structure. Applications aux faisceaux tubulaires, Ed. Eyrolles, Paris, 1994. Zbl0824.73002
  6. [6] Costabel ( M.), Dauge ( M.) and Lafranche ( Y.). — Fast semi-analytic computation of elastic edge singularities, Preprint, Univ. Rennes, 1998. 
  7. [7] Dauge ( M.). - Elliptic Boundary Value Problems in Corner Domains. Smoothness And Asymptotics of Solutions, Lecture Notes in Math., Vol. 1341, Springer, Berlin1988. Zbl0668.35001MR961439
  8. [8] Dauge ( M.) and Nicaise ( S.). - Oblique derivative and interface problems on polygonal domains and networks, Comm. PDE14, 1147-1192, 1989. Zbl0727.35037MR1017069
  9. [9] Kondratiev ( V.A.). - Boundary value problems for elliptic equations in domains with conical or angular points,Trans. Moscow Math. Soc., 16, 1967, 227-313. Zbl0194.13405MR226187
  10. [10] Lagnese ( J.E.). - Controllability of systems of interconnected membranes, Disc. Cont. Dynamical Syst., 1, 1995, 17-33. Zbl0901.73059MR1355863
  11. [11] Lagnese ( J.E.), Leugering ( G.) and Schmidt ( E.J.P.G.). — Modeling, analysis and control of dynamic elastic multi-link structures, Birkhäuser, Boston, 1994. Zbl0810.73004MR1279380
  12. [12] Le Dret ( H.). — Problèmes variationnels dans les multi-domaines. Modélisation des jonctions et applications, RMA19 , Masson, Paris, 1991. Zbl0744.73027MR1130395
  13. [13] Lions ( J.-L.) and Magenes ( E.). - Problèmes aux limites non homogènes et applications, T. 1, Dunod, 1968. Zbl0165.10801
  14. [14] Lumer ( G.). - Espaces ramifiés et diffusions sur les réseaux topologiques, C. R. Acad. Sc.Paris, Série A, 291, 1980, 627-630. Zbl0449.35110MR606449
  15. [15] Maghnouji ( A.) and Nicaise ( S.). - On a coupled problem between the plate equation and the membrane equation on polygons, Annales de la Faculté des sciences de Toulouse, Vol. 2, n°2, 1992. Zbl0794.35046MR1202071
  16. [16] MAZ'YA ( V.G.) and Plameneskii ( B.A.). - Coefficients in the asymptotics of the solutions of elliptic boundary value problems in a cone, J.of Soviet Math., 9, 1978, 750-764. Zbl0396.35038
  17. [17] MAZ'YA ( V.G.) and Plameneskii ( B.A.). — Estimates in Lp and in Hölder classes and the Miranda-Agmon maximum principle for solutions of elliptic boundary value problems in domains with singular points on the boundary, Amer. Math. Soc.Trans., 123 , 1984, 1-56. Zbl0554.35035
  18. [18] Mercier ( D.) et Nicaise ( S.). - Existence results for general systems of differential equations on one-dimensional networks and prewavelets approximation, Discrete and Continuous Dynamical Systems, Vol. 4, N°2, 1998, 273-300. Zbl0985.35013MR1617302
  19. [19] Morand ( H.J.-P.) et Ohayon ( R.). - Interactions Fluides-Structures, RMA13, Masson, Paris, 1992. Zbl0754.73071MR1180076
  20. [20] Nicaise ( S.). - Problèmes aux limites sur les réseaux deux-dimensionnels polygonaux topologiques, J. Math. Pures et Appl., 67, 93-113, 1998. Zbl0698.35047
  21. [21] Nicaise ( S.). - Polygonal interface problems, Series "Methoden und Verfahren der Mathematischen Physik" , 39, Peter Lang Verlag, 1993. Zbl0794.35040MR1236228
  22. [22] Nicaise ( S.) and Sändig ( A.M.). - General Interface Problems-I, Mathematical Methods in the Applied Sciences,17 ,1994,395-429. Zbl0824.35014MR1274152
  23. [23] Nicaise ( S.) and Sändig ( A.M.). - General Interface Problems-II, Mathematical Methods in the Applied Sciences, 17, 1994, 431-450. Zbl0824.35015MR1274152

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.