Critical boundary constants and Pohozaev identity

Ould Ahmed-Izid-Bih Isselkou

Annales de la Faculté des sciences de Toulouse : Mathématiques (2001)

  • Volume: 10, Issue: 2, page 347-359
  • ISSN: 0240-2963

How to cite

top

Isselkou, Ould Ahmed-Izid-Bih. "Critical boundary constants and Pohozaev identity." Annales de la Faculté des sciences de Toulouse : Mathématiques 10.2 (2001): 347-359. <http://eudml.org/doc/73550>.

@article{Isselkou2001,
author = {Isselkou, Ould Ahmed-Izid-Bih},
journal = {Annales de la Faculté des sciences de Toulouse : Mathématiques},
keywords = {Pokhozhaev identity},
language = {eng},
number = {2},
pages = {347-359},
publisher = {UNIVERSITE PAUL SABATIER},
title = {Critical boundary constants and Pohozaev identity},
url = {http://eudml.org/doc/73550},
volume = {10},
year = {2001},
}

TY - JOUR
AU - Isselkou, Ould Ahmed-Izid-Bih
TI - Critical boundary constants and Pohozaev identity
JO - Annales de la Faculté des sciences de Toulouse : Mathématiques
PY - 2001
PB - UNIVERSITE PAUL SABATIER
VL - 10
IS - 2
SP - 347
EP - 359
LA - eng
KW - Pokhozhaev identity
UR - http://eudml.org/doc/73550
ER -

References

top
  1. [1] Agmon ( S.), Douglis ( A.) and Nirenberg ( L.). - Estimates near the Boundary for Solutions of Elliptic Partial Differential Equations satisfying General Boundary Value Conditions I. Comm. Pure Appl. Math., 12, pp. 623-727 (1959). Zbl0093.10401MR125307
  2. [2] Boccardo ( L.), Murat ( F.) and Puel ( J.P.). - Quelques Opérateurs Quasilinéaires. C. R. Acad. Sc.Paris, t. 307, Série I, pp. 749-752 (1988). Zbl0696.35050MR972073
  3. [3] Brezis ( H.) and Nirenberg ( L.). — Positive Solutions of Nonlinear Elliptic Equations Involving Critical Sobolev Exponent. Comm. Pure Appl. Math.36, pp. 437-477 (1983). Zbl0541.35029MR709644
  4. [4] Crandall ( M.G.) and Rabinowitz ( P.H.). - Some Continuation and Variational Methods for Positive Solutions of Nonlinear Elliptic Eigenvalue Problems. Arch. Rational Mech. Anal.58, pp.207-218 (1975). Zbl0309.35057MR382848
  5. [5] Gidas ( B.), Ni ( W.-M.) and Nirenberg ( L.). - Symmetry and Related Properties via the Maximum Principle. Comm. Math. Phys.68, pp.209-243 (1979). Zbl0425.35020MR544879
  6. [6] Gidas ( B.) and Spruck ( J.). — A Priori Bounds for Positive Solutions of Nonlinear Elliptic Equations. Comm. Partial Differential Equations6, pp.883-901 (1981). Zbl0462.35041MR619749
  7. [7] Gidas ( B.) and Spruck ( J.). - Global and Local Behavior of Positive Solutions of Nonlinear Elliptic Equations. Comm. Pure Appl. Math., Vol.34, pp.525-598 (1981). Zbl0465.35003MR615628
  8. [8] Gilbarg ( D.) and Trudinger ( N.S.). - Elliptic Partial Differential Equations of Second Order. Springer Verlag (1977). Zbl0361.35003MR473443
  9. [9] Isselkou ( O.A.-I.-B.). - A Critical Value for the Boundary Datum of a Dirichlet's Problem. Funkcialaj Ekvacioj41, pp.207-214 (1998). Zbl1330.35182MR1662340
  10. [10] Isselkou ( O.A.-I.-B.). — Donnéee au Bord Critique pour un Problème de Dirichlet. Revue URED No 8 and 9 (Dakar, 1999). 
  11. [11] Joseph ( D.D.) and Lundgren ( T.S.). - Quasilinear Dirichlet Problems Driven by Positive Sources. Arch. Rational Mech. Anal.49, pp. 241-269 (1973). Zbl0266.34021MR340701
  12. [12] Loewner ( C.) and Nirenberg ( L.). - Partial Differential Equations Invariant under Conformal or Projective Transformation. Contribution to Analysis (L. Ahlfors ed.), Academic Press, New York, pp. 245-272 (1974). Zbl0298.35018MR358078
  13. [13] Pohozaev ( S.I.). - Eigenfunctions of the Equations Δu + λf(u) = 0. Soviet Math. Dokl.6, pp.1408-1411 (1965). Zbl0141.30202
  14. [14] Pohozaev ( S.I.). - On Entire Solutions of Semilinear Elliptic Equations. Research Note Math.266, Pitman, pp.56-69, London (1992). Zbl0821.35046MR1194215

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.