On the regularity of solutions to a nonvariational elliptic equation

Luigi D'Onofrio; Luigi Greco

Annales de la Faculté des sciences de Toulouse : Mathématiques (2002)

  • Volume: 11, Issue: 1, page 47-56
  • ISSN: 0240-2963

How to cite

top

D'Onofrio, Luigi, and Greco, Luigi. "On the regularity of solutions to a nonvariational elliptic equation." Annales de la Faculté des sciences de Toulouse : Mathématiques 11.1 (2002): 47-56. <http://eudml.org/doc/73571>.

@article{DOnofrio2002,
author = {D'Onofrio, Luigi, Greco, Luigi},
journal = {Annales de la Faculté des sciences de Toulouse : Mathématiques},
language = {eng},
number = {1},
pages = {47-56},
publisher = {UNIVERSITE PAUL SABATIER},
title = {On the regularity of solutions to a nonvariational elliptic equation},
url = {http://eudml.org/doc/73571},
volume = {11},
year = {2002},
}

TY - JOUR
AU - D'Onofrio, Luigi
AU - Greco, Luigi
TI - On the regularity of solutions to a nonvariational elliptic equation
JO - Annales de la Faculté des sciences de Toulouse : Mathématiques
PY - 2002
PB - UNIVERSITE PAUL SABATIER
VL - 11
IS - 1
SP - 47
EP - 56
LA - eng
UR - http://eudml.org/doc/73571
ER -

References

top
  1. [1] Alvino ( A.) and Trombetti ( G.). — Second Order Elliptic Equations whose Coefficients Have Their First Derivates Weakly Ln, Ann. Mat. Pura Appl., (4) 138 (1985), 331-340. Zbl0579.35019MR779550
  2. [2] Bass ( R.F.).— The Dirichlet problem for radially homogeneuos elliptic operator, Trans. Amer. Mat. Soc., 320, no. 2 (1990), 593-614. Zbl0743.60073MR968415
  3. [3] Bénilan ( P.) and Bouhsiss ( F.). — Une remarque sur l'unicité des solutions pour l'opérateur de Serrin, C. R. Acad. Sci.Paris, t. 325, Série I, (1997), 611-616. Zbl0892.35049MR1473833
  4. [4] Courant ( R.) and Hilbert ( D.). - Methods of Mathematical Physics, Interscience Publishers, Inc., New York, 1953. Zbl0051.28802MR65391
  5. [5] Franciosi ( M.) and Fusco ( N.). — A W2,2 bound for a class of elliptic equations with discontinuous coefficients, Ricerche Mat., 31 (1982), 207-218. Zbl0524.35034MR713417
  6. [6] Gilbarg ( D.) and Serrin ( J.). — On isolated singularities of solutions of second order elliptic differential equations, J. Analyse Math., 4 (1955-56), 309-340. Zbl0071.09701MR81416
  7. [7] Gilbarg ( D.) and Trudinger ( N.S.).— Elliptic Partial Differential Equations of Second Order, Second Edition, Springer-Verlag, Berlin, 1983. Zbl0562.35001MR737190
  8. [8] Greco ( L.) and Sbordone ( C.). - Sharp Upper Bounds for the Degree of Regularity of the Solutions to an Elliptic Equation, Comm. Partial Differential Equations, (5 &6) 27 (2002), 945-952. Zbl1019.35021
  9. [9] Miranda ( C.). — Sulle equazioni ellittiche del secondo ordine di tipo non variazionale a coefficienti discontinui, Ann. Mat. Pura Appl., (4) 63 (1963), 353-386. Zbl0156.34001MR170090
  10. [10] Pucci ( C.). — Opemtori ellittici estremanti, Ann. Mat. Pura Appl., (4) 72 (1966), 141-170. Zbl0154.12402MR208150
  11. [11] Serrin ( J.). — Pathological solutions of elliptic differential equations, Ann. Scuola Norm. Sup. Pisa, (3) 18 (1964), 385-387. Zbl0142.37601MR170094
  12. [12] Stein ( E.M.). — Singular Integrals and Differentiability Properties of Functions, Princeton University Press, Princeton, 1970. Zbl0207.13501MR290095
  13. [13] Talenti ( G.). — Sopra una classe di equazioni ellittiche a coefficienti misurabili, Ann. Mat. Pura Appl., (4) 69 (1965), 285-304. Zbl0145.36602MR201816

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.