Inverses et propriétés spectrales des matrices de Toeplitz à symbole singulier

Jean-Marc Rinkel

Annales de la Faculté des sciences de Toulouse : Mathématiques (2002)

  • Volume: 11, Issue: 1, page 71-103
  • ISSN: 0240-2963

How to cite

top

Rinkel, Jean-Marc. "Inverses et propriétés spectrales des matrices de Toeplitz à symbole singulier." Annales de la Faculté des sciences de Toulouse : Mathématiques 11.1 (2002): 71-103. <http://eudml.org/doc/73574>.

@article{Rinkel2002,
author = {Rinkel, Jean-Marc},
journal = {Annales de la Faculté des sciences de Toulouse : Mathématiques},
keywords = {inverse of Toeplitz operators of finite order; extremal eigenvalues of Toeplitz matrices},
language = {fre},
number = {1},
pages = {71-103},
publisher = {UNIVERSITE PAUL SABATIER},
title = {Inverses et propriétés spectrales des matrices de Toeplitz à symbole singulier},
url = {http://eudml.org/doc/73574},
volume = {11},
year = {2002},
}

TY - JOUR
AU - Rinkel, Jean-Marc
TI - Inverses et propriétés spectrales des matrices de Toeplitz à symbole singulier
JO - Annales de la Faculté des sciences de Toulouse : Mathématiques
PY - 2002
PB - UNIVERSITE PAUL SABATIER
VL - 11
IS - 1
SP - 71
EP - 103
LA - fre
KW - inverse of Toeplitz operators of finite order; extremal eigenvalues of Toeplitz matrices
UR - http://eudml.org/doc/73574
ER -

References

top
  1. [1] Böttcher ( A.) et Silbermann ( B.). — Analysis of Toeplitz operators, Springer Verlag1990. Zbl0732.47029MR1071374
  2. [2] Grenander ( U.) et Szegö ( G.). - Toeplitz forms and their applications, 2nd ed. Chelsea, New York1984. Zbl0611.47018MR890515
  3. [3] Kac ( M.). — Random walk and the theory of Brownian motion, American Mathematical Monthly54, 369-391 (1947). Zbl0031.22604MR21262
  4. [4] Kac ( M.), Murdoch ( W.L.) et Szegö ( G.). - On the eigenvalues of certain hermitian forms, J. Rational Mech. Anal.2, 767-800 (1953). Zbl0051.30302MR59482
  5. [5] Seghier ( A.). — Matrices de Toeplitz dans le cas d-dimensionnel : développement asymptotique à l'ordre d, Thèse d'état Orsay (1988). 
  6. [6] Kateb ( D.) et Seghier ( A.). — Expansion of the inverse of positive definite Toeplitz operators over polytopes, Asymptotic Analysis22, 205-234 (2000). Zbl0974.47020MR1753765
  7. [7] Parter ( S.). — Extreme eigenvalues of Toeplitz forms and applications to elliptic difference equations, Trans. Amer. Math. Soc.99, 153-192 (1961). Zbl0099.32403MR120492
  8. [8] Rambour ( P.), Rinkel ( J.-M.) et Seghier ( A.). - Inverse asymptotique de la matrice de Toeplitz et noyau de Green, C. R. Acad. Sci.Paris331, 857-860 (2000). Zbl0965.15002MR1806422
  9. [9] Rinkel ( J.-M.). — Inverses et propriétés spectrales des matrices de Toeplitz à symbole singulier, Thèse Orsay (2001). 
  10. [10] Seghier ( A.). — Inversion asymptotique des matrices de Toeplitz en d-dimension., J. of Functional Analysis67, 380-412 (1986). Zbl0589.47023MR845464
  11. [11] Serra ( S.). — On the extreme eigenvalues of hermitian Toeplitz matrices, Linear Algebra and its Applications270, 109-129 (1998). Zbl0892.15014MR1484077
  12. [12] Widom ( H.). — On the eigenvalues of certain hermitian operators, Trans. Amer. Math. Soc.88, 491-522 (1958). Zbl0101.09202MR98321
  13. [13] Widom ( H.). — Toeplitz determinant with singular generating function, Amer. J. Math.95, 333-383 (1973). Zbl0275.45006MR331107
  14. [14] Widom ( H.). — Extreme eigenvalues of N-dimensional convolution operators, Trans. Amer. Math. Soc.106, 391-414 (1963). Zbl0205.14603MR145294

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.