Geometric mean curvature lines on surfaces immersed in 𝐑 3

Ronaldo Garcia; Jorge Sotomayor

Annales de la Faculté des sciences de Toulouse : Mathématiques (2002)

  • Volume: 11, Issue: 3, page 377-401
  • ISSN: 0240-2963

How to cite

top

Garcia, Ronaldo, and Sotomayor, Jorge. "Geometric mean curvature lines on surfaces immersed in ${\bf R}^3$." Annales de la Faculté des sciences de Toulouse : Mathématiques 11.3 (2002): 377-401. <http://eudml.org/doc/73583>.

@article{Garcia2002,
author = {Garcia, Ronaldo, Sotomayor, Jorge},
journal = {Annales de la Faculté des sciences de Toulouse : Mathématiques},
keywords = {surface; Euclidean space; geometric mean curvature; transversal foliation; umbilic point; parabolic curve; singularity; structural stability},
language = {eng},
number = {3},
pages = {377-401},
publisher = {UNIVERSITE PAUL SABATIER},
title = {Geometric mean curvature lines on surfaces immersed in $\{\bf R\}^3$},
url = {http://eudml.org/doc/73583},
volume = {11},
year = {2002},
}

TY - JOUR
AU - Garcia, Ronaldo
AU - Sotomayor, Jorge
TI - Geometric mean curvature lines on surfaces immersed in ${\bf R}^3$
JO - Annales de la Faculté des sciences de Toulouse : Mathématiques
PY - 2002
PB - UNIVERSITE PAUL SABATIER
VL - 11
IS - 3
SP - 377
EP - 401
LA - eng
KW - surface; Euclidean space; geometric mean curvature; transversal foliation; umbilic point; parabolic curve; singularity; structural stability
UR - http://eudml.org/doc/73583
ER -

References

top
  1. [1] Andronov ( A.) and Leontovich ( E.) et al. - Theory of Bifurcations of Dynamic Systems on a Plane, Jerusalem, Israel Program of Scientific Translations, 1973. 
  2. [2] Anosov ( D.V.). - Geodesic Flows on Closed Riemannian Manifolds of Negative Curvature, Proc. Steklov Institute of Mathematics, Amer. Math. Soc. Transl., 90, 1967 and 1969. Zbl0176.19101MR242194
  3. [3] Banchoff ( T.), Gaffney ( T.) and Mccrory ( C.). - Cusps of Gauss Maps, PitmanResearch Notes in Math., London, 55 (1982), 1-130. Zbl0478.53002MR657143
  4. [4] Bruce ( B.) and Fidal ( D.). - On binary differential equations and umbilic points, Proc. Royal Soc. Edinburgh, 111A (1989), 147-168. Zbl0685.34004MR985996
  5. [5] Darboux ( G.). - Leçons sur la Théorie des Surfaces, vol. IV. Sur la forme des lignes de courbure dans la voisinage d'un ombilic, Note07, Paris:Gauthier Villars, 1896. 
  6. [6] Garcia ( R.) and Sotomayor ( J.). - Structural stability of parabolic points and periodic asymptotic lines, Matemática Contemporânea, 12 (1997), 83-102. Zbl0930.53003MR1634428
  7. [7] Garcia ( R.) and Sotomayor ( J.). - Structurally stable configurations of lines of mean curvature and umbilic points on surfaces immersed in R3, Publ. Matemátiques., 45:2 (2001), 431-466. Zbl1005.53003MR1876916
  8. [8] Garcia ( R.) and Sotomayor ( J.). - Lines of Harmonic Mean Curvature on surfaces immersed in R3, Pré-Publication du Laboratoire de Topologie, Université de Bourgogne, 294 (2002), 1-27. MR1992644
  9. [9] Garcia ( R.), Gutierrez ( C.) and Sotomayor ( J.). - Structural stability of asymptotic lines on surfaces immersed in R3, Bull. Sciences Math., 123 (1999), pp. 599-622. MR1725206
  10. [10] Garcia ( R.) and Sotomayor ( J.). - Mean curvature lines on surfaces immersed in R3. In preparation. 
  11. [11] Guíñez ( V.). - Positive quadratic differential forms and foliations with singularities on surfaces, Trans. Amer. Math. Soc., 309:2 (1988), pp. 477-502. Zbl0707.57014MR961601
  12. [12] Gutierrez ( C.) and Sotomayor ( J.). - Structural Stable Configurations of Lines of Principal Curvature, Asterisque, 98-99 (1982), 185-215. Zbl0521.53003MR724448
  13. [13] Gutierrez ( C.) and Sotomayor ( J.). - An Approximation Theorem for Immersions with Structurally Stable Configurations of Lines of Principal Curvature, Lect. Notes in Math., 1007, 1983. Zbl0528.53002MR730276
  14. [14] Gutierrez ( C.) and Sotomayor ( J.). - Lines of Curvature and Umbilic Points on Surfaces, 18th Brazilian Math. Colloquium, Rio de Janeiro, IMPA, 1991. Reprinted as Structurally Configurations of Lines of Curvature and Umbilic Points on Surfaces, Lima, Monografias del IMCA, 1998. MR2007065
  15. [15] Gutierrez ( C.) and Sotomayor ( J.). - Lines of Curvature, Umbilical Points and Carathéodory Conjecture, Resenhas IME-USP, 03 (1998), 291-322. Zbl1098.53500MR1633013
  16. [16] Melo ( W.) and Palis ( J.). - Geometric Theory of Dynamical Systems, New York, Springer Verlag, 1982. Zbl0491.58001MR669541
  17. [17] Occhipinti ( R.). - Sur un double système de lignes d'une surface. L'enseignement mathématique (1914), 38-44. JFM45.0874.01
  18. [18] Ogura ( K.). - On the T-System on a Surface, Tohoku Math. Journal, 09 (1916), 87-101. JFM46.1085.01
  19. [19] Palis ( J.) and Takens ( F.). - Topological equivalence of normally hyperbolic dynamical systems, Topology, 16 (1977), 335-345. Zbl0391.58015MR474409
  20. [20] Peixoto ( M.). - Structural Stability on two-dimensional manifolds, Topology, 1 (1962), 101-120. Zbl0107.07103MR142859
  21. [21] Roussarie ( R.). - Bifurcations of Planar Vector Fields and Hilbert's Sixteen Problem, Progress in Mathematics, 164, Birkhaüser Verlag, Basel, 1988. Zbl0898.58039MR1094374
  22. [22] Spivak ( M.). - Introduction to Comprehensive Differential Geometry, Vol. IIIBerkeley, Publish or Perish, 1980. Zbl0439.53003
  23. [23] Sansone ( G.) and Conti ( R.). - Equazioni Differenziali non Lineari, Edizioni Cremonese, Roma, 1956. Zbl0075.26803MR88607
  24. [24] Struik ( D.). - Lectures on Classical Differential Geometry, Addison Wesley Pub. Co., Reprinted by Dover Publications, Inc., 1988. Zbl0697.53002MR939369

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.