Solvable-by-finite groups as differential Galois groups

Claude Mitschi; Michael F. Singer

Annales de la Faculté des sciences de Toulouse : Mathématiques (2002)

  • Volume: 11, Issue: 3, page 403-423
  • ISSN: 0240-2963

How to cite

top

Mitschi, Claude, and Singer, Michael F.. "Solvable-by-finite groups as differential Galois groups." Annales de la Faculté des sciences de Toulouse : Mathématiques 11.3 (2002): 403-423. <http://eudml.org/doc/73584>.

@article{Mitschi2002,
author = {Mitschi, Claude, Singer, Michael F.},
journal = {Annales de la Faculté des sciences de Toulouse : Mathématiques},
keywords = {Picard-Vessiot extension; differential Galois group; inverse problem of differential Galois theory},
language = {eng},
number = {3},
pages = {403-423},
publisher = {UNIVERSITE PAUL SABATIER},
title = {Solvable-by-finite groups as differential Galois groups},
url = {http://eudml.org/doc/73584},
volume = {11},
year = {2002},
}

TY - JOUR
AU - Mitschi, Claude
AU - Singer, Michael F.
TI - Solvable-by-finite groups as differential Galois groups
JO - Annales de la Faculté des sciences de Toulouse : Mathématiques
PY - 2002
PB - UNIVERSITE PAUL SABATIER
VL - 11
IS - 3
SP - 403
EP - 423
LA - eng
KW - Picard-Vessiot extension; differential Galois group; inverse problem of differential Galois theory
UR - http://eudml.org/doc/73584
ER -

References

top
  1. [1] Bertrand ( D.). - Review of "Lectures on differential Galois theory" by A. Magid, Bull. AMS, 33 (1996), 289-294. Springer Verlag, 1991. MR1466700
  2. [2] Borel ( A.). - Linear Algebraic Groups, second edition, Springer Verlag, 1991. Zbl0726.20030MR1102012
  3. [3] Borel ( A.), Serre ( J.-P.). - Théorèmes de finitude en cohomologie galoisienne, Comment. Math. Helv., 39 (1964-1965), 111-164. Zbl0143.05901MR181643
  4. [4] Chevalley ( C.). - Théorie des groupes de Lie, Vol.II, Groupes algébriques, Hermann, Paris, 1951. Zbl0054.01303MR51242
  5. [5] Deligne ( P.). - Catégories tannakiennes, The Grothendieck Festschrift2, p. 111-195, Progress in Math., 87 (1990), Birkhäuser. Zbl0727.14010MR1106898
  6. [6] Hartmann ( J.). - On the Inverse Problem in Differential Galois Theory, Preprint, Universität Heidelberg, 2002. 
  7. [7] Hochschild ( G.). - Basic Theory of Algebraic Groups and Lie Algebras, Graduate Texts in Mathematics, 75, Springer-Verlag, 1981. Zbl0589.20025MR620024
  8. [8] Kolchin ( E.R.). - Differential Algebra and Algebraic Groups, Academic Press, 1976. Zbl0264.12102MR568864
  9. [9] Kolchin ( E.R.). - Algebraic groups and algebraic dependence, Amer. J. Math., 90 (1968), 1151-1164. Zbl0169.36701MR240106
  10. [10] Kovacic ( J.). - The Inverse Problem in the Galois Theory of Differential Fields, Annals of Mathematics, 89 (1969), 583-608. Zbl0188.33801MR244218
  11. [11] Kovacic ( J.). - On the Inverse Problem in the Galois Theory of Differential Fields, Annals of Mathematics, 93 (1971), 269-284. Zbl0214.06004MR285514
  12. [12] Lang ( S.). - Algebra, Third Edition, Addison-Wesley, 1993. Zbl0848.13001
  13. [13] Magid ( A.). - Lectures on Differential Galois theory, University Lecture Series, American Mathematical Society, Second edition, 1994. Zbl0855.12001MR1301076
  14. [14] Mitschi ( C.), Singer ( M.F.). - Connected Linear Groups as Differential Galois Groups, Journal of Algebra, 184 (1996), 333-361. Zbl0867.12004MR1402584
  15. [15] Van Der Put ( M.). - Galois Theory of differential equations, algebraic groups and Lie algebras, Journal of Symbolic Computation, 28 (1999), 441-472. Zbl0997.12008MR1731933
  16. [16] Van Der Put ( M.). - Recent work in differential Galois theory, Séminaire Bourbaki, volume 1997/98 (exposé 849), Astérisque, Société Mathématique de France, Paris, 1998. Zbl0931.12008MR1685624
  17. [17] Van Der Put ( M.), Singer ( M.F.).— Galois Theory of Differential Equations, to appear. 
  18. [18] Ritt ( J.F.). - Differential Algebra, Am. Math. Soc. Coll. Pub., Vol. 33, Am. Math.Soc., 1950. Zbl0037.18402MR35763
  19. [19] Ramis ( J.P.). - About the Inverse Problem in Differential Galois Theory: the Differential Abhyankar Conjecture, unpublished manuscript, 1996. MR1443697
  20. [20] Ramis ( J.P.). - About the inverse problem in differential Galois theory: the differential Abhyankar conjecture, in The Stokes phenomenon and Hilbert's 16th Problem, World Scientific Publ. (Editors B.L.J. Braaksma, G.K. Immink, M. van der Put), Singapore1996. Zbl0860.12003MR1443697
  21. [21] Serre ( J.P.).— Cohomologie Galoisienne, cinquième édition, Lecture Notes in Mathematics, 5, Springer-Verlag, 1994. Zbl0812.12002MR1324577
  22. [22] Singer ( M.F.). - Moduli of linear differential equations on the Riemann sphere with fixed Galois groups, Pacific J. Math., 106, No. 2 (1993), 343-395. Zbl0778.12007MR1233356
  23. [23] Tretkoff ( C.), Tretkoff ( M.). - Solution of the inverse problem of differential Galois theory in the classical case, Amer. J. Math., 1979, 1327-1332. Zbl0423.12021MR548884
  24. [24] Volklein ( H.). - Groups as Galois Groups, Cambridge Studies in Advanced Mathematics, Vol. 53, Cambridge University Press, 1996. Zbl0868.12003MR1405612
  25. [25] Wehfritz ( B.A.F.). - Infinite Linear Groups, Springer-Verlag, 1973. Zbl0261.20038

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.