Existence de surfaces de Willmore qui ne sont pas minimales
Annales de la Faculté des sciences de Toulouse : Mathématiques (2002)
- Volume: 11, Issue: 3, page 425-434
- ISSN: 0240-2963
Access Full Article
topHow to cite
topMoniot, Grégoire-Thomas. "Existence de surfaces de Willmore qui ne sont pas minimales." Annales de la Faculté des sciences de Toulouse : Mathématiques 11.3 (2002): 425-434. <http://eudml.org/doc/73585>.
@article{Moniot2002,
author = {Moniot, Grégoire-Thomas},
journal = {Annales de la Faculté des sciences de Toulouse : Mathématiques},
keywords = {Willmore functional; Willmore surface},
language = {fre},
number = {3},
pages = {425-434},
publisher = {UNIVERSITE PAUL SABATIER},
title = {Existence de surfaces de Willmore qui ne sont pas minimales},
url = {http://eudml.org/doc/73585},
volume = {11},
year = {2002},
}
TY - JOUR
AU - Moniot, Grégoire-Thomas
TI - Existence de surfaces de Willmore qui ne sont pas minimales
JO - Annales de la Faculté des sciences de Toulouse : Mathématiques
PY - 2002
PB - UNIVERSITE PAUL SABATIER
VL - 11
IS - 3
SP - 425
EP - 434
LA - fre
KW - Willmore functional; Willmore surface
UR - http://eudml.org/doc/73585
ER -
References
top- [Br] Bryant ( R.L.). - A Duality Theorem for Willmore Surfaces, Journal of differential geometry, 20, no. 1 (1984), p 23-53. Zbl0555.53002MR772125
- [Wi] Willmore ( T.J.). — Note On Embedded Surfaces, An. st. Univ. Iasi, s.I.a. Mathematica, 11B (1965), 493-496. Zbl0171.20001MR202066
- [Pi] Pinkall ( U.). — Hopf Tori in S3, Inventiones mathematicae, 81, no. 2 (1985), 379-386. Zbl0585.53051MR799274
- [La-Si] Langer ( J.) et Singer ( D.A.). - Curve-straightening in Riemannian manifolds, Ann. Global Anal. Geom., 5, no. 2 (1987), 133-150. Zbl0653.53032MR944778
- [Th] Thomsen ( G.). — Über Konforme Geometrie I : Grundlagen der Konformen Flächentheorie, Abh. Math. Sem. Hambourg, (1923), 31-56. Zbl49.0530.02JFM49.0530.02
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.