Modeling conditional and marginal association in contingency tables
Wicher P. Bergsma; Tamás Rudas
Annales de la Faculté des sciences de Toulouse : Mathématiques (2002)
- Volume: 11, Issue: 4, page 455-468
- ISSN: 0240-2963
Access Full Article
topHow to cite
topBergsma, Wicher P., and Rudas, Tamás. "Modeling conditional and marginal association in contingency tables." Annales de la Faculté des sciences de Toulouse : Mathématiques 11.4 (2002): 455-468. <http://eudml.org/doc/73588>.
@article{Bergsma2002,
author = {Bergsma, Wicher P., Rudas, Tamás},
journal = {Annales de la Faculté des sciences de Toulouse : Mathématiques},
language = {eng},
number = {4},
pages = {455-468},
publisher = {UNIVERSITE PAUL SABATIER},
title = {Modeling conditional and marginal association in contingency tables},
url = {http://eudml.org/doc/73588},
volume = {11},
year = {2002},
}
TY - JOUR
AU - Bergsma, Wicher P.
AU - Rudas, Tamás
TI - Modeling conditional and marginal association in contingency tables
JO - Annales de la Faculté des sciences de Toulouse : Mathématiques
PY - 2002
PB - UNIVERSITE PAUL SABATIER
VL - 11
IS - 4
SP - 455
EP - 468
LA - eng
UR - http://eudml.org/doc/73588
ER -
References
top- [1] Agresti ( A.). - Categorical Data Analysis, Wiley, New York, 1990. Zbl0716.62001MR1044993
- [2] Arnold ( B.C.), Castillo ( E.), Sarabia ( J.M.). - Conditional Specification of Statistical Models, Springer-Verlag, New-York, 1999. Zbl0932.62001MR1716531
- [3] Barndorff-Nielsen ( O.E.). - Information and Exponential Families in Statistical Theory, Wiley, New York, 1978. Zbl0387.62011MR489333
- [4] Bergsma ( W.P.). - Marginal Models for Categorical Data, PhD thesis, Tilburg University, Tilburg, 1997. Zbl0881.62003
- [5] Bergsma ( W.P.), Rudas ( T.). - Marginal models for categorical data, The Annals of Statistics, 30 (2002), 140-159. Zbl1012.62063MR1892659
- [6] Bishop ( Y.M.M.), Fienberg ( S.E.), Holland ( P.W.). - Discrete Multivariate Analysis: Theory and Practice, MIT Press, Cambridge, MA, 1975. Zbl0332.62039MR381130
- [7] Colombi ( R.). - A multivariate logit model with marginal canonical association, Communications in Statistics: Theory and Method, 27 (1998), 2953-2972. Zbl1063.62555MR1696404
- [8] Colombi ( R.), Forcina ( A.). - Marginal regression models for the analysis of positive association of ordinal response variables, Biometrika, 88 (2001), 1007-1019. Zbl1006.62057MR1872216
- [9] Edwards ( A.W.F.). - The measure of association in a 2 x 2 table, Journal of the Royal Statistical Society, Series A, 126 (1963), 109-114.
- [10] Glonek ( G.J.N.), Mccullagh ( P.). - Multivariate logistic models, Journal of the Royal Statistical Society, Series B, 57 (1995), 533-546. Zbl0827.62059
- [11] Haberman ( S.J.). - The Analysis of Frequency Data, University of Chicago Press, Chicago, 1974. Zbl0325.62017MR408098
- [12] Haberman ( S.J.). - Tests for independence in two-way contingency tables based on canonical correlation and on linear-by-linear interaction, The Annals of Statistics, 9 (1981), 1178-1186. Zbl0479.62043MR630101
- [13] Hagenaars ( J.A.). - Categorical Longitudinal Data, Sage, Newbury Park, 1990. MR1057178
- [14] Kellerer ( H.G.). - Verteilungsfunktionen mit gegebenen Marginalverteilungen, Zeitschrift für Wahrscheinlichkeitstheorie und verwandte Gebiete, 3 (1964), 247-270. Zbl0126.34003MR175158
- [15] Lauritzen ( S.L.). - Graphical Models, Oxford University Press, Oxford, 1996. Zbl0907.62001MR1419991
- [16] Rudas ( T.). - Odds Ratios in the Analysis of Contingency Tables, Sage, Thousand Oaks, 1998.
- [17] Rudas ( T.), Bergsma ( W.P.). - On generalized symmetry, in The Quasi Symmetry Project, http://www.upstlse.fr/PROJET_QS/PAPERS/Rudas2/Rudas2.html, 2001.
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.