Local existence of a solution of a semi-linear wave equation in a neighborhood of initial characteristic hypersurfaces
Annales de la Faculté des sciences de Toulouse : Mathématiques (2003)
- Volume: 12, Issue: 1, page 47-102
- ISSN: 0240-2963
Access Full Article
topHow to cite
topCabet, Aurore. "Local existence of a solution of a semi-linear wave equation in a neighborhood of initial characteristic hypersurfaces." Annales de la Faculté des sciences de Toulouse : Mathématiques 12.1 (2003): 47-102. <http://eudml.org/doc/73600>.
@article{Cabet2003,
author = {Cabet, Aurore},
journal = {Annales de la Faculté des sciences de Toulouse : Mathématiques},
keywords = {null hypersurfaces; Minkowski space; uniqueness},
language = {eng},
number = {1},
pages = {47-102},
publisher = {Université Paul Sabatier, Institut de Mathématiques},
title = {Local existence of a solution of a semi-linear wave equation in a neighborhood of initial characteristic hypersurfaces},
url = {http://eudml.org/doc/73600},
volume = {12},
year = {2003},
}
TY - JOUR
AU - Cabet, Aurore
TI - Local existence of a solution of a semi-linear wave equation in a neighborhood of initial characteristic hypersurfaces
JO - Annales de la Faculté des sciences de Toulouse : Mathématiques
PY - 2003
PB - Université Paul Sabatier, Institut de Mathématiques
VL - 12
IS - 1
SP - 47
EP - 102
LA - eng
KW - null hypersurfaces; Minkowski space; uniqueness
UR - http://eudml.org/doc/73600
ER -
References
top- [1] Cagnac ( F. ). - Problème de Cauchy sur un conoïde caractéristique pour des Equations quasi-linéaires, Annali di Matematica Pura ed Applicata (IV), vol. CXXIX, 13-41 (1980). Zbl0486.35023MR648323
- [2] Cagnac ( F. ) et Dossa ( M.). - Problème de Cauchy sur un conoïde caractéristique. Applications à certains systèmes non linéaires d'origine physique. (The characteristic Cauchy problem on a conoid. Applications to certain nonlinear systems of physical origin)., Flato, M. (ed.) et al., Physics on manifolds. Proceedings of the international colloquium analysis, manifols and physics in honour of Yvonne Choquet-Bruhat, Paris, France, June 3-5, 1992. Dordrecht: Kluwer Academic Publishers. Math. Phys. Stud.15, 35-47 (1994). Zbl0830.35049MR1267067
- [3] Courant ( R. ) and Hilbert ( D.). — Methods of mathematical physics , vol. IINew York: Interscience (1962). Zbl0099.29504MR65391
- [4] Friedrich ( H.). - On the regular and the asymptotic characteristic initial value problem for Einstein's vacuum field equations, Proc. Roy. Soc. London A375, 169-184 (1981). Zbl0454.58017MR618984
- [5] Müller Zum Hagen ( H.) and Seifert ( H.J.).— On Characteristic Initial- Value and Mixed Problems, General Relativity and Gravitation , Vol.8, No. 4, 259-301 (1977). Zbl0417.35052
- [6] Rendall ( A.D. ). - Reduction of the characteristic initial value problem to the Cauchy probem and its applications to the Einstein equations , Proc. Roy. Soc.LondonA427, 221-239 (1990). Zbl0701.35149MR1032984
- [7] Taylor ( M.E. ). — Partial Differential Equations III: Nonlinear Equations, Applied Mathematical Sciences117, New York, NY: Springer-Verlag, pp. 7-11 (1996). Zbl0869.35004MR1477408
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.