Local existence of a solution of a semi-linear wave equation in a neighborhood of initial characteristic hypersurfaces

Aurore Cabet

Annales de la Faculté des sciences de Toulouse : Mathématiques (2003)

  • Volume: 12, Issue: 1, page 47-102
  • ISSN: 0240-2963

How to cite

top

Cabet, Aurore. "Local existence of a solution of a semi-linear wave equation in a neighborhood of initial characteristic hypersurfaces." Annales de la Faculté des sciences de Toulouse : Mathématiques 12.1 (2003): 47-102. <http://eudml.org/doc/73600>.

@article{Cabet2003,
author = {Cabet, Aurore},
journal = {Annales de la Faculté des sciences de Toulouse : Mathématiques},
keywords = {null hypersurfaces; Minkowski space; uniqueness},
language = {eng},
number = {1},
pages = {47-102},
publisher = {Université Paul Sabatier, Institut de Mathématiques},
title = {Local existence of a solution of a semi-linear wave equation in a neighborhood of initial characteristic hypersurfaces},
url = {http://eudml.org/doc/73600},
volume = {12},
year = {2003},
}

TY - JOUR
AU - Cabet, Aurore
TI - Local existence of a solution of a semi-linear wave equation in a neighborhood of initial characteristic hypersurfaces
JO - Annales de la Faculté des sciences de Toulouse : Mathématiques
PY - 2003
PB - Université Paul Sabatier, Institut de Mathématiques
VL - 12
IS - 1
SP - 47
EP - 102
LA - eng
KW - null hypersurfaces; Minkowski space; uniqueness
UR - http://eudml.org/doc/73600
ER -

References

top
  1. [1] Cagnac ( F. ). - Problème de Cauchy sur un conoïde caractéristique pour des Equations quasi-linéaires, Annali di Matematica Pura ed Applicata (IV), vol. CXXIX, 13-41 (1980). Zbl0486.35023MR648323
  2. [2] Cagnac ( F. ) et Dossa ( M.). - Problème de Cauchy sur un conoïde caractéristique. Applications à certains systèmes non linéaires d'origine physique. (The characteristic Cauchy problem on a conoid. Applications to certain nonlinear systems of physical origin)., Flato, M. (ed.) et al., Physics on manifolds. Proceedings of the international colloquium analysis, manifols and physics in honour of Yvonne Choquet-Bruhat, Paris, France, June 3-5, 1992. Dordrecht: Kluwer Academic Publishers. Math. Phys. Stud.15, 35-47 (1994). Zbl0830.35049MR1267067
  3. [3] Courant ( R. ) and Hilbert ( D.). — Methods of mathematical physics , vol. IINew York: Interscience (1962). Zbl0099.29504MR65391
  4. [4] Friedrich ( H.). - On the regular and the asymptotic characteristic initial value problem for Einstein's vacuum field equations, Proc. Roy. Soc. London A375, 169-184 (1981). Zbl0454.58017MR618984
  5. [5] Müller Zum Hagen ( H.) and Seifert ( H.J.).— On Characteristic Initial- Value and Mixed Problems, General Relativity and Gravitation , Vol.8, No. 4, 259-301 (1977). Zbl0417.35052
  6. [6] Rendall ( A.D. ). - Reduction of the characteristic initial value problem to the Cauchy probem and its applications to the Einstein equations , Proc. Roy. Soc.LondonA427, 221-239 (1990). Zbl0701.35149MR1032984
  7. [7] Taylor ( M.E. ). — Partial Differential Equations III: Nonlinear Equations, Applied Mathematical Sciences117, New York, NY: Springer-Verlag, pp. 7-11 (1996). Zbl0869.35004MR1477408

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.