Critical exponent and minimization problem in N

Samira Benmouloud-Sbai; Mohamed Guedda

Annales de la Faculté des sciences de Toulouse : Mathématiques (2003)

  • Volume: 12, Issue: 3, page 303-315
  • ISSN: 0240-2963

How to cite

top

Benmouloud-Sbai, Samira, and Guedda, Mohamed. "Critical exponent and minimization problem in $\mathbb {R}^N$." Annales de la Faculté des sciences de Toulouse : Mathématiques 12.3 (2003): 303-315. <http://eudml.org/doc/73605>.

@article{Benmouloud2003,
author = {Benmouloud-Sbai, Samira, Guedda, Mohamed},
journal = {Annales de la Faculté des sciences de Toulouse : Mathématiques},
language = {eng},
number = {3},
pages = {303-315},
publisher = {Université Paul Sabatier, Institut de Mathématiques},
title = {Critical exponent and minimization problem in $\mathbb \{R\}^N$},
url = {http://eudml.org/doc/73605},
volume = {12},
year = {2003},
}

TY - JOUR
AU - Benmouloud-Sbai, Samira
AU - Guedda, Mohamed
TI - Critical exponent and minimization problem in $\mathbb {R}^N$
JO - Annales de la Faculté des sciences de Toulouse : Mathématiques
PY - 2003
PB - Université Paul Sabatier, Institut de Mathématiques
VL - 12
IS - 3
SP - 303
EP - 315
LA - eng
UR - http://eudml.org/doc/73605
ER -

References

top
  1. [1] Brezis ( H. ), On some variational problem with limiting Sobolev exponent, Progress in variational methods, Pitman Res. Notes Math. Ser243, Longman, p. 42-51 (1992). Zbl0790.58013MR1176343
  2. [2] Brezis ( H. ) and Kato ( T.), Remarks on the Schrodinger operator with singular complex potentials, J. Math. Pure Appl.58, p. 137-151 (1979). Zbl0408.35025MR539217
  3. [3] Brezis ( H. ) & Lieb ( E.), A relation between pointwise convergence of functions and convergence of functionals, Proc. Amer. Math. Soc.88, p. 486-490 (1983). Zbl0526.46037
  4. [4] Brezis ( H. ) & Nirenberg ( L.), Positive solutions of nonlinear elliptic equations involving critical Sobolev exponents, Comm. Pure Ap. Math.36, p. 437-477 (1983). Zbl0541.35029
  5. [5] Escobedo ( M. ) and Kavian ( O.), Variational problems related to self-similar solutions of the heat equation, Nonlinear Analysis TMA11, No 10, p. 1103-1133 (1987 ). Zbl0639.35038MR913672
  6. [6] Folland ( G.B. ), Real analysis, Willey-intrescience , (1984). Zbl0549.28001MR767633
  7. [7] Guedda ( M. ), A note on nonhomogeneous biharmonic equations involving critical Sobolev exponent, Port. Math.56, Fas. 3, p. 299-308 (1999). Zbl0933.35073MR1716054
  8. [8] Guedda ( M. ) and Veron ( L.), Quasilinear elliptic equations involving critical Sobolev exponents, Non-linear Analysis, The, Meth. and Appl., 13, No 8, p. 879-902 (1989). Zbl0714.35032MR1009077
  9. [9] Guedda ( M. ), Hadiji ( R.) and Picard ( C.), A biharmonic problems with constaint involving critical Sobolev exponent, Proc. R. Soc. Edinb., p. 1113-1132 (2001). Zbl1002.49002MR1862445

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.