Removability of singularities of harmonic maps into pseudo-riemannian manifolds

Frédéric Hélein

Annales de la Faculté des sciences de Toulouse : Mathématiques (2004)

  • Volume: 13, Issue: 1, page 45-71
  • ISSN: 0240-2963

How to cite

top

Hélein, Frédéric. "Removability of singularities of harmonic maps into pseudo-riemannian manifolds." Annales de la Faculté des sciences de Toulouse : Mathématiques 13.1 (2004): 45-71. <http://eudml.org/doc/73620>.

@article{Hélein2004,
author = {Hélein, Frédéric},
journal = {Annales de la Faculté des sciences de Toulouse : Mathématiques},
keywords = {harmonic maps; removable singularity; maximum principle},
language = {eng},
number = {1},
pages = {45-71},
publisher = {Université Paul Sabatier, Institut de Mathématiques},
title = {Removability of singularities of harmonic maps into pseudo-riemannian manifolds},
url = {http://eudml.org/doc/73620},
volume = {13},
year = {2004},
}

TY - JOUR
AU - Hélein, Frédéric
TI - Removability of singularities of harmonic maps into pseudo-riemannian manifolds
JO - Annales de la Faculté des sciences de Toulouse : Mathématiques
PY - 2004
PB - Université Paul Sabatier, Institut de Mathématiques
VL - 13
IS - 1
SP - 45
EP - 71
LA - eng
KW - harmonic maps; removable singularity; maximum principle
UR - http://eudml.org/doc/73620
ER -

References

top
  1. [1] Bryant ( R. ), A duality theorem for Willmore surfaces , J. Differential Geom.20, p. 23-53 (1984). Zbl0555.53002MR772125
  2. [2] Burstall ( F. ) , Ferus ( D.), Leschke ( K.), Pedit ( F.), Pinkall ( U.), Conformal geometry of surfaces in S4 and quaternions, Lecture Notes in Mathematics, Springer, Berlin , Heidelberg, (2002). Zbl1033.53001MR1887131
  3. [3] Gilbarg ( D. ) , Trudinger ( N.S.), Elliptic partial differential equations of second order, Springer-VerlagBerlinHeidelberg ( 2001). Zbl1042.35002MR1814364
  4. [4] Hélein ( F.) , Regularity and uniqueness of harmonic maps into an ellipsoid , Manuscripta Math.60, p. 235-257 (1988). Zbl0646.58020MR924091
  5. [5] Hélein ( F.) , Willmore immersions and loop groups, J. Differential Geom.50, p. 331-385 (1998). Zbl0938.53033MR1684984
  6. [6] Jäger ( W.) , Kaul ( H. ), Uniqueness and stability of harmonic maps and their Jacobi fields, Manuscripta Math.28, p. 269-291 (1979). Zbl0413.31006MR535705
  7. [7] Ladyzhenskaya ( O.), Ural'tseva ( N.), Linear and quasilinear elliptic equations, Academic Press ( 1968). Zbl0164.13002MR244627
  8. [8] Morrey ( C.B. ) , Multiple integrals in the calculus of variations, Grundleheren 130, Springer Berlin, ( 1966). Zbl0142.38701MR202511
  9. [9] Sacks ( J.) , Uhlenbeck ( K.), The existence of minimal immersions of 2-spheres , Ann. Math.113, p. 1-24 (1981). Zbl0462.58014MR604040
  10. [10] Stein ( E.) , Singular integrals and differentiability properties of functions, Princeton University Press, ( 1970). Zbl0207.13501MR290095

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.