Removability of singularities of harmonic maps into pseudo-riemannian manifolds

Frédéric Hélein

Annales de la Faculté des sciences de Toulouse : Mathématiques (2004)

  • Volume: 13, Issue: 1, page 45-71
  • ISSN: 0240-2963

How to cite

top

Hélein, Frédéric. "Removability of singularities of harmonic maps into pseudo-riemannian manifolds." Annales de la Faculté des sciences de Toulouse : Mathématiques 13.1 (2004): 45-71. <http://eudml.org/doc/73620>.

@article{Hélein2004,
author = {Hélein, Frédéric},
journal = {Annales de la Faculté des sciences de Toulouse : Mathématiques},
keywords = {harmonic maps; removable singularity; maximum principle},
language = {eng},
number = {1},
pages = {45-71},
publisher = {Université Paul Sabatier, Institut de Mathématiques},
title = {Removability of singularities of harmonic maps into pseudo-riemannian manifolds},
url = {http://eudml.org/doc/73620},
volume = {13},
year = {2004},
}

TY - JOUR
AU - Hélein, Frédéric
TI - Removability of singularities of harmonic maps into pseudo-riemannian manifolds
JO - Annales de la Faculté des sciences de Toulouse : Mathématiques
PY - 2004
PB - Université Paul Sabatier, Institut de Mathématiques
VL - 13
IS - 1
SP - 45
EP - 71
LA - eng
KW - harmonic maps; removable singularity; maximum principle
UR - http://eudml.org/doc/73620
ER -

References

top
  1. [1] Bryant ( R. ), A duality theorem for Willmore surfaces , J. Differential Geom.20, p. 23-53 (1984). Zbl0555.53002MR772125
  2. [2] Burstall ( F. ) , Ferus ( D.), Leschke ( K.), Pedit ( F.), Pinkall ( U.), Conformal geometry of surfaces in S4 and quaternions, Lecture Notes in Mathematics, Springer, Berlin , Heidelberg, (2002). Zbl1033.53001MR1887131
  3. [3] Gilbarg ( D. ) , Trudinger ( N.S.), Elliptic partial differential equations of second order, Springer-VerlagBerlinHeidelberg ( 2001). Zbl1042.35002MR1814364
  4. [4] Hélein ( F.) , Regularity and uniqueness of harmonic maps into an ellipsoid , Manuscripta Math.60, p. 235-257 (1988). Zbl0646.58020MR924091
  5. [5] Hélein ( F.) , Willmore immersions and loop groups, J. Differential Geom.50, p. 331-385 (1998). Zbl0938.53033MR1684984
  6. [6] Jäger ( W.) , Kaul ( H. ), Uniqueness and stability of harmonic maps and their Jacobi fields, Manuscripta Math.28, p. 269-291 (1979). Zbl0413.31006MR535705
  7. [7] Ladyzhenskaya ( O.), Ural'tseva ( N.), Linear and quasilinear elliptic equations, Academic Press ( 1968). Zbl0164.13002MR244627
  8. [8] Morrey ( C.B. ) , Multiple integrals in the calculus of variations, Grundleheren 130, Springer Berlin, ( 1966). Zbl0142.38701MR202511
  9. [9] Sacks ( J.) , Uhlenbeck ( K.), The existence of minimal immersions of 2-spheres , Ann. Math.113, p. 1-24 (1981). Zbl0462.58014MR604040
  10. [10] Stein ( E.) , Singular integrals and differentiability properties of functions, Princeton University Press, ( 1970). Zbl0207.13501MR290095

NotesEmbed ?

top

You must be logged in to post comments.