Lévy processes, pseudo-differential operators and Dirichlet forms in the Heisenberg group

David Applebaum; Serge Cohen

Annales de la Faculté des sciences de Toulouse : Mathématiques (2004)

  • Volume: 13, Issue: 2, page 149-177
  • ISSN: 0240-2963

How to cite

top

Applebaum, David, and Cohen, Serge. "Lévy processes, pseudo-differential operators and Dirichlet forms in the Heisenberg group." Annales de la Faculté des sciences de Toulouse : Mathématiques 13.2 (2004): 149-177. <http://eudml.org/doc/73622>.

@article{Applebaum2004,
author = {Applebaum, David, Cohen, Serge},
journal = {Annales de la Faculté des sciences de Toulouse : Mathématiques},
keywords = {infinitesimal generators; Mehler's formula; Schrödinger representation; Hunt process},
language = {eng},
number = {2},
pages = {149-177},
publisher = {Université Paul Sabatier, Institut de Mathématiques},
title = {Lévy processes, pseudo-differential operators and Dirichlet forms in the Heisenberg group},
url = {http://eudml.org/doc/73622},
volume = {13},
year = {2004},
}

TY - JOUR
AU - Applebaum, David
AU - Cohen, Serge
TI - Lévy processes, pseudo-differential operators and Dirichlet forms in the Heisenberg group
JO - Annales de la Faculté des sciences de Toulouse : Mathématiques
PY - 2004
PB - Université Paul Sabatier, Institut de Mathématiques
VL - 13
IS - 2
SP - 149
EP - 177
LA - eng
KW - infinitesimal generators; Mehler's formula; Schrödinger representation; Hunt process
UR - http://eudml.org/doc/73622
ER -

References

top
  1. [1] Applebaum ( D.), Kunita ( H.). - Lévy flows on manifolds and Lévy processes on Lie groups, J. Math Kyoto Univ33, 1103-23 (1993). Zbl0804.58057MR1251218
  2. [2] Applebaum ( D. ). — Lévy processes in stochastic differential geometry in Lévy Processes: Theory and Applications ed. O.Barndorff-Nielsen, T. Mikosch , S. Resnick ( BirkhäuserBostonBaselBerlin), 111-39 (2001). Zbl0984.60056MR1833695
  3. [3] Applebaum ( D.). - Operator-valued stochastic differential equations arising from unitary group representations, J. Theor. Prob.14, 61-76 (2001). Zbl0979.60059MR1822894
  4. [4] Applebaum ( D.). - Compound Poisson processes and Lévy processes in groups and symmetric spaces, J. Theor. Prob.13, 383-425 (2000). Zbl0985.60047MR1777540
  5. [5] Baldus ( F.). - Strongly elliptic operators in spectrally invariant Ψ(M,g)-classes and generators of Markov processes, Universität Mainz preprint (2001). 
  6. [6] Baldus ( F.). - S(M, g)-Pseudo Differential Calculus with Spectral Invariance on Rn and Manifolds for Banach Function Spaces, Logos Verlag, Berlin (2001). Zbl0982.58020
  7. [7] Bouleau ( N. ) , Hirsch ( F.). - Dirichlet Forms and Analysis on Wiener Space, Walter de Gruyter, Berlin , New York (1991). Zbl0748.60046MR1133391
  8. [8] Courrège ( P.). - Sur la forme intégro-différentielle des operateurs de C∞k dans C satifaisant au principe du maximum , Sém. Théorie du Potential exposé2, 38 pp (1965/66 ). 
  9. [9] Folland ( G.F. ). - Harmonic Analysis on Phase Space, Annals of Math. Studies122, Princeton University Press (1989). Zbl0682.43001MR983366
  10. [10] Fukushima ( M. ), Oshima ( Y.), Takeda ( M.). - Dirichlet Forms and Symmetric Markov Processes, Walter de Gruyter, Berlin, New York (1994 ). Zbl0838.31001MR1303354
  11. [11] Gaveau ( B. ). — Holonomie stochastique et représentations du groupe d'Heisenberg. C.R. Acad. Sc. Paris. t. 280, 571-573 (1975). Zbl0294.43013MR516955
  12. [12] Glowacki ( P.). - Stable semigroups of measures on the Heisenberg group, Studia Math.79, 105-38 (1984). Zbl0563.43002MR783046
  13. [13] Heyer ( H.). - Probability Measures on Locally Compact Groups, Springer-Verlag, Berlin- Heidelberg (1977). Zbl0376.60002MR501241
  14. [14] Hoh ( W.). - A construction of jump type Markov processes on manifolds , (in preparation) (2001). 
  15. [15] Howe ( R.). - On the role of the Heisenberg group in harmonic analysis , Bull. Amer. Math. Soc.3, 821-43 (1980). Zbl0442.43002MR578375
  16. [16] Hulanicki ( A.). - The distribution of energy in the Brownian motion in the Gaussian field and analytic-hypoellipticity of certain subelliptic operators in the Heisenberg group, Studia Math56, 165-173 (1976). Zbl0336.22007MR418257
  17. [17] Hunt ( G.A. ). - Semigroups of measures on Lie groups, Trans. Amer. Math. Soc.81, 264-93 (1956). Zbl0073.12402
  18. [18] Jacob ( N.) , Schilling ( R.). - Lévy-type processes and pseudodifferential operators in Lévy Processes: Theory and Applications ed. O. Barndorff-Nielsen, T. Mikosch, S. Resnick ( BirkhäuserBostonBaselBerlin), 139-69 (2001). Zbl0984.60054MR1833696
  19. [19] Jacob ( N. ). - Pseudo-differential Operators and Markov Processes, Akademie-Verlag, Mathematical Research vol 94, Berlin (1996). Zbl0860.60002MR1409607
  20. [20] Kunita ( H. ). - Stable Lévy processes on nilpotent Lie groups, in Stochastic Analysis on Infinite Dimensional Spaces, Pitman Research Notes Vol. 310, 167-82 (1994). Zbl0814.60003MR1415667
  21. [21] Ma ( Z.-M. ) , Röckner ( M.). - Introduction to the Theory of non-Symmetric Dirichlet Forms, Springer-Verlag, BerlinHeidelberg (1992 ). Zbl0826.31001
  22. [22] Neuenschwander ( D.). - Probabilities on the Heisenberg Group - Limit Theorems and Brownian Motion, Springer-Verlag, BerlinHeidelberg (1996 ). Zbl0870.60007MR1439509
  23. [23] Pap ( G.). — Construction of processes with stationary and independent increments in Lie groups, Archiv der Math.69, 146-55 (1997). Zbl0904.60008MR1458701
  24. [24] Pap ( G.). - Fourier transform of symmetric Gauss measures on the Heisenberg group, Semigroup Forum, 64, 130-58 (2002). Zbl0989.60006MR1867200
  25. [25] Protter ( P. ). - Stochastic Integration and Differential Equations, Springer-Verlag, BerlinHeidelberg (1992). Zbl0694.60047MR2020294
  26. [26] Ramaswami ( S.). - Semigroups of measures on Lie groups, J. Indian Math. Soc.38, 175-89 (1974). Zbl0353.60017MR420130
  27. [27] Sato ( K-I.). - Lévy Processes and Infinite Divisibility, Cambridge University Press (1999). 
  28. [28] Siebert ( E.). — Fourier analysis and limit theorems for convolution semigroups on a locally compact group, Advances in Math.39, 111-54 (1981). Zbl0469.60014MR609202
  29. [29] Taylor ( M.E. ). - Noncommutative Harmonic Analysis, American Math. Soc (1986). Zbl0604.43001MR852988
  30. [30] Weyl ( H.). - Group Theory and Quantum Mechanics, Dover Publications (first published in German by Methuen and Co Ltd (1931)) (1950). 
  31. [31] Yamoto ( Y. ).— Stochastic differential equations and nilpotent Lie algebras, Z. Wahrscheinlichkeitstheorie verw. Gebiete47, 213-29 (1979). Zbl0427.60069
  32. [32] Yor ( M.). - Some Aspects of Brownian Motion, Part 1, LNM ETHZürich, Birkhäuser (1992). Zbl0779.60070

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.