Real cohomology groups of the space of nonsingular curves of degree 5 in ℂℙ 2

Alexei G. Gorinov

Annales de la Faculté des sciences de Toulouse : Mathématiques (2005)

  • Volume: 14, Issue: 3, page 395-434
  • ISSN: 0240-2963

How to cite

top

Gorinov, Alexei G.. "Real cohomology groups of the space of nonsingular curves of degree 5 in $\mathbb {CP}^{2}$." Annales de la Faculté des sciences de Toulouse : Mathématiques 14.3 (2005): 395-434. <http://eudml.org/doc/73652>.

@article{Gorinov2005,
author = {Gorinov, Alexei G.},
journal = {Annales de la Faculté des sciences de Toulouse : Mathématiques},
keywords = {complex projective hypersurface; homogeneous polynomial; discriminant; Borel-Moore homology; canonical resolution},
language = {eng},
number = {3},
pages = {395-434},
publisher = {Université Paul Sabatier, Institut de Mathématiques},
title = {Real cohomology groups of the space of nonsingular curves of degree 5 in $\mathbb \{CP\}^\{2\}$},
url = {http://eudml.org/doc/73652},
volume = {14},
year = {2005},
}

TY - JOUR
AU - Gorinov, Alexei G.
TI - Real cohomology groups of the space of nonsingular curves of degree 5 in $\mathbb {CP}^{2}$
JO - Annales de la Faculté des sciences de Toulouse : Mathématiques
PY - 2005
PB - Université Paul Sabatier, Institut de Mathématiques
VL - 14
IS - 3
SP - 395
EP - 434
LA - eng
KW - complex projective hypersurface; homogeneous polynomial; discriminant; Borel-Moore homology; canonical resolution
UR - http://eudml.org/doc/73652
ER -

References

top
  1. [1] Arnold ( V.I. ). - On some topological invariants of algebraic functions , Transact. (Trudy) of Moscow Math. Society , 21, p. 27-46, 1970. MR274462
  2. [2] Vassiliev ( V.A.). — How to calculate homology groups of spaces of nonsingular algebraic projective hypersurfaces in CPn, Proc. Steklov Math. Inst., vol. 225, p. 121-140, 1999. Zbl0981.55008MR1738399
  3. [3] Vassiliev ( V.A. ). — Topology of complements of discriminants , Phasis, Moscow, 1997 (in Russian). 
  4. [4] Peters ( C.A.M. ), Steenbrink( J.H.M.). — Degeneration of the Leray spectral sequence for certain geometric quotients, Moscow Math. J. , Vol. 3, n° 3, 2003, p. 1085-1095. Zbl1049.14035
  5. [5] Shafarevich ( I.R.). — Basic Algebraic Geometry 1, Springer-Verlag, Berlin, 1994. Zbl0797.14001MR1328833

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.