Real cohomology groups of the space of nonsingular curves of degree 5 in
Annales de la Faculté des sciences de Toulouse : Mathématiques (2005)
- Volume: 14, Issue: 3, page 395-434
- ISSN: 0240-2963
Access Full Article
topHow to cite
topGorinov, Alexei G.. "Real cohomology groups of the space of nonsingular curves of degree 5 in $\mathbb {CP}^{2}$." Annales de la Faculté des sciences de Toulouse : Mathématiques 14.3 (2005): 395-434. <http://eudml.org/doc/73652>.
@article{Gorinov2005,
author = {Gorinov, Alexei G.},
journal = {Annales de la Faculté des sciences de Toulouse : Mathématiques},
keywords = {complex projective hypersurface; homogeneous polynomial; discriminant; Borel-Moore homology; canonical resolution},
language = {eng},
number = {3},
pages = {395-434},
publisher = {Université Paul Sabatier, Institut de Mathématiques},
title = {Real cohomology groups of the space of nonsingular curves of degree 5 in $\mathbb \{CP\}^\{2\}$},
url = {http://eudml.org/doc/73652},
volume = {14},
year = {2005},
}
TY - JOUR
AU - Gorinov, Alexei G.
TI - Real cohomology groups of the space of nonsingular curves of degree 5 in $\mathbb {CP}^{2}$
JO - Annales de la Faculté des sciences de Toulouse : Mathématiques
PY - 2005
PB - Université Paul Sabatier, Institut de Mathématiques
VL - 14
IS - 3
SP - 395
EP - 434
LA - eng
KW - complex projective hypersurface; homogeneous polynomial; discriminant; Borel-Moore homology; canonical resolution
UR - http://eudml.org/doc/73652
ER -
References
top- [1] Arnold ( V.I. ). - On some topological invariants of algebraic functions , Transact. (Trudy) of Moscow Math. Society , 21, p. 27-46, 1970. MR274462
- [2] Vassiliev ( V.A.). — How to calculate homology groups of spaces of nonsingular algebraic projective hypersurfaces in CPn, Proc. Steklov Math. Inst., vol. 225, p. 121-140, 1999. Zbl0981.55008MR1738399
- [3] Vassiliev ( V.A. ). — Topology of complements of discriminants , Phasis, Moscow, 1997 (in Russian).
- [4] Peters ( C.A.M. ), Steenbrink( J.H.M.). — Degeneration of the Leray spectral sequence for certain geometric quotients, Moscow Math. J. , Vol. 3, n° 3, 2003, p. 1085-1095. Zbl1049.14035
- [5] Shafarevich ( I.R.). — Basic Algebraic Geometry 1, Springer-Verlag, Berlin, 1994. Zbl0797.14001MR1328833
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.