On the relation between the Borel sum and the classical solution of the Cauchy problem for certain partial differential equations

Kunio Ichinobe

Annales de la Faculté des sciences de Toulouse : Mathématiques (2005)

  • Volume: 14, Issue: 3, page 435-458
  • ISSN: 0240-2963

How to cite

top

Ichinobe, Kunio. "On the relation between the Borel sum and the classical solution of the Cauchy problem for certain partial differential equations." Annales de la Faculté des sciences de Toulouse : Mathématiques 14.3 (2005): 435-458. <http://eudml.org/doc/73653>.

@article{Ichinobe2005,
author = {Ichinobe, Kunio},
journal = {Annales de la Faculté des sciences de Toulouse : Mathématiques},
keywords = {Borel summability; integral representation; equations of non-Kovalevski type},
language = {eng},
number = {3},
pages = {435-458},
publisher = {Université Paul Sabatier, Institut de Mathématiques},
title = {On the relation between the Borel sum and the classical solution of the Cauchy problem for certain partial differential equations},
url = {http://eudml.org/doc/73653},
volume = {14},
year = {2005},
}

TY - JOUR
AU - Ichinobe, Kunio
TI - On the relation between the Borel sum and the classical solution of the Cauchy problem for certain partial differential equations
JO - Annales de la Faculté des sciences de Toulouse : Mathématiques
PY - 2005
PB - Université Paul Sabatier, Institut de Mathématiques
VL - 14
IS - 3
SP - 435
EP - 458
LA - eng
KW - Borel summability; integral representation; equations of non-Kovalevski type
UR - http://eudml.org/doc/73653
ER -

References

top
  1. [Bal] Balser ( W.). — From Divergent Power Series to .Analytic Functions , Springer Lecture Notes, No. 1582 (1994). Zbl0810.34046MR1317343
  2. [Ich 1] Ichinobe ( K.). - The Borel Sum of Divergent Barnes Hypergeometric Series and its Application to a Partial Differential Equation, Publ. Res. Inst. Math. Sci.37, No. 1, p. 91-117 (2001). Zbl0969.33004MR1815996
  3. [Ich 2] -, Integral Representation for Borel Sum of Divergent Solution to a certain non-Kowalevski type Equation, Publ. Res. Inst. Math. Sci.39, No. 4, p. 657-693 (2003). Zbl1063.35049MR2025459
  4. [LMS] Lutz ( D.) , Miyake ( M.), Schäfke ( R.). — On the Borel summability of divergent solutions of the heat equation, Nagoya Math. J.154, p. 1-29 (1999). Zbl0958.35061MR1689170
  5. [Luk] Luke ( Y.L.). — The Special Functions and Their Approximations , Vol IAcademic Press , 1969. Zbl0193.01701MR241700
  6. [Miy] Miyake ( M.). — Borel summability of divergent solutions of the Cauchy problem to non-Kowalevskian equations, Partial differential equations and their applications (Wuhan, 1999), p. 225-239, World Sci. PublishingRiver Edge, NJ ( 1999). Zbl0990.35005MR1742036
  7. [MS] Mathai ( A.M. ) , Saxena ( R.K.). - Generalized Hypergeometric Functions with Applications in Statistics and Physical Sciences, Springer Lecture Notes. No. 348, ( 1973). Zbl0272.33001MR463524

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.