Extension of correspondences between rigid polynomial domains

Nabil Ourimi

Annales de la Faculté des sciences de Toulouse : Mathématiques (2005)

  • Volume: 14, Issue: 3, page 501-514
  • ISSN: 0240-2963

How to cite

top

Ourimi, Nabil. "Extension of correspondences between rigid polynomial domains." Annales de la Faculté des sciences de Toulouse : Mathématiques 14.3 (2005): 501-514. <http://eudml.org/doc/73655>.

@article{Ourimi2005,
author = {Ourimi, Nabil},
journal = {Annales de la Faculté des sciences de Toulouse : Mathématiques},
keywords = {proper holomorphic correspondences; rigid polynomial domains; strongly pseudoconvex domains},
language = {eng},
number = {3},
pages = {501-514},
publisher = {Université Paul Sabatier, Institut de Mathématiques},
title = {Extension of correspondences between rigid polynomial domains},
url = {http://eudml.org/doc/73655},
volume = {14},
year = {2005},
}

TY - JOUR
AU - Ourimi, Nabil
TI - Extension of correspondences between rigid polynomial domains
JO - Annales de la Faculté des sciences de Toulouse : Mathématiques
PY - 2005
PB - Université Paul Sabatier, Institut de Mathématiques
VL - 14
IS - 3
SP - 501
EP - 514
LA - eng
KW - proper holomorphic correspondences; rigid polynomial domains; strongly pseudoconvex domains
UR - http://eudml.org/doc/73655
ER -

References

top
  1. [1] Bedford ( E. ), Bell ( S.). — Boundary behavior of proper holomorphic correspondences, Math. Ann.272, p. 505-518 (1985). Zbl0582.32024MR807287
  2. [2] Bedford ( E. ) , Bell ( S. ). - Boundary continuity of proper holomorphic correspondences, Lecture Notes in Mathematics , 1198, p. 47-64 (1983- 84). Zbl0596.32027MR874760
  3. [3] Bedford ( E. ), Fornaess ( J.E.). — A construction of peak functions on weakly pseudoconvex domains, Ann. of Math.107, p. 555-568 (1978). Zbl0392.32004MR492400
  4. [4] Bedford ( E. ), Pinchuk ( S.). — Domains in Cn+1 with non-compact automorphisms group, J. Geom. Anal.1, p. 165-191 (1991). Zbl0733.32014MR1120679
  5. [5] Berteloot ( F.), Sukhov ( A.). - On the continuous extension of holomorphic correspondences, Ann. Scuola Norm. Sup. PisaXXIV, p. 747-766 (1997). Zbl0911.32021MR1627322
  6. [6] Catlin ( D. ). — Boundary invariants of pseudoconvex domains, Ann. of Math., 120, p. 529-586 (1984). Zbl0583.32048MR769163
  7. [7] Chirka ( E.M.). — Complex Analytic Sets, Kluwer Academic Publishers (1989). Zbl0683.32002MR1111477
  8. [8] Coupet ( B.), Pinchuk ( S.). - Holomorphic equivalence problem for weighted homogeneous rigid domains in Cn+1, in collection of papers dedicated to B. V. Shabat, Nauka, Moscow, p. 111-126 (1997). Zbl1057.32008
  9. [9] Diederich ( K.), Fornaess ( J.E.). — Proper holomorphic mappings between real analytic pseudoconvex domains in CnMath. Ann.282, p. 681-700 (1988). Zbl0661.32025MR970228
  10. [10] Diederich ( K.), Fornaess ( J.E.). — Applications holomorphes propres entre domaines à bord analytique réel. C. R. Acad. Sci.307, p. 681-700 (1988). Zbl0656.32013MR958790
  11. [11] Diederich ( K.), Pinchuk ( S.). — Regularity of continuous CR-maps in arbitrary dimension, Michigan Math. J.51, no.1, p. 111-140 (2003). Zbl1044.32011MR1960924
  12. [12] Diederich ( K.), Pinchuk ( S.). — Proper holomorphic maps in dimension 2 extend, Indiana Univ. Math. J.44, p. 1089-1126 (1995). Zbl0857.32015MR1386762
  13. [13] Diederich ( K.), Webster ( S.). — A reflexion principle for degenerate real hypersurfaces, Duke Math. J.47, p. 835-845 (1980). Zbl0451.32008MR596117
  14. [14] Pinchuk ( S.). — On the boundary behavior of analytic set and algebroid mappings. Soviet Math. Dokl. Akad. Nauk USSR268, p. 296-298 (1983). Zbl0577.32008MR688243
  15. [15] Pinchuk ( S.). — Holomorphic mappings in Cn and the problem of holomorphic equivalence, Encyl. Math. Sci.9, p. 173-199 (1989). Zbl0658.32011
  16. [16] Pinchuk ( S.). — On the analytic continuation of holomorphic mappings, Math. USSR Sb.27, p. 375-392 (1975). Zbl0366.32010
  17. [17] Pinchuk ( S.), Tsyganov ( Sh.). — Smoothness of CR mappings between strongly pseudoconvex hypersurfaces, Math. USSR Izvestga35, p. 457-467 (1990). Zbl0712.32016MR1024457
  18. [18] Sibony ( N. ). — Une classe de domaines pseudoconvexes , Duke Math. Journal, Vol. 55, No.2, p. 299-319 (1987). Zbl0622.32016MR894582
  19. [19] Shafikov ( R.). - Analytic continuation of Germs of Holomorphic Mappings, Michigan Math. J.47. (2000). Zbl0966.32007MR1755261
  20. [20] Shafikov ( R.). - Analytic continuation of holomorphic correspondences and equivalence of domains in Cn, Invent. Math.152, p. 665-682 (2003). Zbl1024.32008MR1988297
  21. [21] Shafikov ( R.), Verma ( K.). — A local extension theorem for proper holomorphic mappings in C2, J. Geom. Anal.13, no.4, p. 697-714 (2003). Zbl1049.32023MR2005160
  22. [22] Rudin ( W.). — Function theory in polydiscs, Mathematics lecture note in series. Zbl0177.34101
  23. [23] Webster ( S.). — On the mapping problem for algebraic real hypersurfaces, Invent. Math.43, p. 53-68 (1977). Zbl0348.32005MR463482
  24. [24] Verma ( K. ). - Boundary regularity of correspondences in C2, Math. Z.231, p. 253-299 (1999). Zbl0939.32014MR1703349
  25. [25] Zaitsev ( D.). — Algebraicity of local holomorphisms between real algebraic sub-manifolds of complex spaces, Acta Math.183, p. 273-305 (1999). Zbl1005.32014MR1738046

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.