Summability of power series in several variables, with applications to singular perturbation problems and partial differential equations

Werner Balser

Annales de la Faculté des sciences de Toulouse : Mathématiques (2005)

  • Volume: 14, Issue: 4, page 593-608
  • ISSN: 0240-2963

How to cite

top

Balser, Werner. "Summability of power series in several variables, with applications to singular perturbation problems and partial differential equations." Annales de la Faculté des sciences de Toulouse : Mathématiques 14.4 (2005): 593-608. <http://eudml.org/doc/73659>.

@article{Balser2005,
author = {Balser, Werner},
journal = {Annales de la Faculté des sciences de Toulouse : Mathématiques},
keywords = {Borel transform; Laplace transform},
language = {eng},
number = {4},
pages = {593-608},
publisher = {Université Paul Sabatier, Institut de Mathématiques},
title = {Summability of power series in several variables, with applications to singular perturbation problems and partial differential equations},
url = {http://eudml.org/doc/73659},
volume = {14},
year = {2005},
}

TY - JOUR
AU - Balser, Werner
TI - Summability of power series in several variables, with applications to singular perturbation problems and partial differential equations
JO - Annales de la Faculté des sciences de Toulouse : Mathématiques
PY - 2005
PB - Université Paul Sabatier, Institut de Mathématiques
VL - 14
IS - 4
SP - 593
EP - 608
LA - eng
KW - Borel transform; Laplace transform
UR - http://eudml.org/doc/73659
ER -

References

top
  1. [1] Balser ( W.). — From Divergent Power Series to Analytic Functions, vol. 1582 of Lecture Notes in Math, Springer Verlag, New York, (1994 ). Zbl0810.34046MR1317343
  2. [2] Balser ( W. ). — Divergent solutions of the heat equation: on an article of Lutz, Miyake and Schäfke, Pacific J. of Math., 188, p. 53-63 (1999). Zbl0960.35045MR1680415
  3. [3] Balser ( W.). — Formal power series and linear systems of meromorphic ordinary differential equations, Springer-Verlag, New York, (2000). Zbl0942.34004MR1722871
  4. [4] Balser ( W. ), Miyake ( M.). — Summability of formal solutions of certain partial differential equations, Acta Sci. Math. (Szeged), 65, p. 543-551 (1999). Zbl0987.35032MR1737270
  5. [5] Ecalle ( J. ). — Les fonctions résurgentes I-II, Publ. Math. d'Orsay, Université Paris Sud, (1981). 
  6. [6] Ecalle ( J. ). - Les fonctions résurgentes III, Publ. Math. d'Orsay, Université Paris Sud, (1985). Zbl0602.30029MR852210
  7. [7] Ecalle ( J.). — Introduction à l'Accélération et à ses Applications, Travaux en Cours, Hermann, Paris , (1993). 
  8. [8] Lutz ( D.A. ), Miyake ( M.), Schäfke ( R.).— On the Borel summability of divergent solutions of the heat equation, Nagoya Math. J., 154, p. 1-29 (1999). Zbl0958.35061MR1689170
  9. [9] Majima ( H. ). — Asymptotic Analysis for Integrable Connections with Irregular Singular Points, vol. 1075 of Lecture Notes in Math, Springer Verlag, New York, (1984 ). Zbl0546.58003MR757897
  10. [10] Miyake ( M. ), Ichinobe ( K.). — On the Borel summability of divergent solutions of parabolic type equations and Barnes generalized hypergeometric functions, Surikaisekikenkyusho Kokyuroku , (2000), p. 43-57. Microlocal analysis and related topics (Japanese (Kyoto, 1999). Zbl0969.35512MR1799123
  11. [11] Mozo-Fernández ( J.). — Cohomology theorems for asymptotic sheaves, Tohoku Math. J. (2), 51, p. 447-460 (1999). Zbl0959.32018MR1725621
  12. [12] Mozo-Fernández ( J.). - Weierstrass theorems in strong asymptotic analysis, Bull. Polish Acad. Sci. Math., 49, p. 255-268 (2001). Zbl0988.54019MR1863264
  13. [13] Tougeron ( J.-C.). — Sur les ensembles semi-analytiques avec conditions Gevrey au bord, Ann. scient. Éc. Norm. Sup. , 27 (1994), p. 173-208. MR1266469

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.