Approximation diophantienne et distances ultramétriques non standard

Sandra Delaunay

Annales de la Faculté des sciences de Toulouse : Mathématiques (2005)

  • Volume: 14, Issue: 4, page 629-661
  • ISSN: 0240-2963

How to cite

top

Delaunay, Sandra. "Approximation diophantienne et distances ultramétriques non standard." Annales de la Faculté des sciences de Toulouse : Mathématiques 14.4 (2005): 629-661. <http://eudml.org/doc/73661>.

@article{Delaunay2005,
author = {Delaunay, Sandra},
journal = {Annales de la Faculté des sciences de Toulouse : Mathématiques},
keywords = {Diophantine approximation; classification of numbers; ultrametric non-standard distances; hyperreals},
language = {fre},
number = {4},
pages = {629-661},
publisher = {Université Paul Sabatier, Institut de Mathématiques},
title = {Approximation diophantienne et distances ultramétriques non standard},
url = {http://eudml.org/doc/73661},
volume = {14},
year = {2005},
}

TY - JOUR
AU - Delaunay, Sandra
TI - Approximation diophantienne et distances ultramétriques non standard
JO - Annales de la Faculté des sciences de Toulouse : Mathématiques
PY - 2005
PB - Université Paul Sabatier, Institut de Mathématiques
VL - 14
IS - 4
SP - 629
EP - 661
LA - fre
KW - Diophantine approximation; classification of numbers; ultrametric non-standard distances; hyperreals
UR - http://eudml.org/doc/73661
ER -

References

top
  1. [BBK] Bourbaki ( N. ). — Topologie générale, « Structures uniformes » Ch. 2, §3. Zbl0449.54001
  2. [CAS] Cassels ( J.W.S. ). — An introduction to diophantine approximation Ch.VI et VII, Cambridge Univ. Press ( 1957). Zbl0077.04801MR87708
  3. [DESC] Descombes ( R. ). — Eléments de théorie des nombres , PUF 198. Zbl0584.10001
  4. [GOLD] Goldblatt ( R.). - Lectures on the Hyperreals, Graduate Texts in Math., Springer ( 1998). Zbl0911.03032MR1643950
  5. [LdM] Lasjaunias ( A. ), DE Mathan ( B.).— Thue's theorem in positive characteristic, J. Reine Angew. Math.473, p. 195-206 (1996). Zbl0844.11046MR1390688
  6. [LIND] Lindstrom ( T. ). — A set of hyperreals, in Non standard analysis and its applications, Edited by Nigel Cutland, London Math. Soc., Student text 10, Cambridge Univ. press, p. 1-99 (1988). 
  7. [MIW] Waldschmidt ( M.). — Nombres transcendants, Lecture Note402. Zbl0302.10030
  8. [PPH] Philippon ( P.). — Classification de Mahler et distances locales, Bull. Austral. Math. Soc., vol. 49, Number 2, p. 219-238 (1994). Zbl0799.11019MR1265359
  9. [VDP] Van Der Poorten ( A.J.). — Continued fractions of formal power series, Adv. Number Theory , Oxford, p. 453-466 (1993). Zbl0804.11043MR1368441

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.