Universal real locally convex linear topological spaces

Otton Martin Nikodým

Annales de l'institut Fourier (1951)

  • Volume: 3, page 1-21
  • ISSN: 0373-0956

How to cite

top

Nikodým, Otton Martin. "Universal real locally convex linear topological spaces." Annales de l'institut Fourier 3 (1951): 1-21. <http://eudml.org/doc/73699>.

@article{Nikodým1951,
author = {Nikodým, Otton Martin},
journal = {Annales de l'institut Fourier},
keywords = {functional analysis},
language = {eng},
pages = {1-21},
publisher = {Association des Annales de l'Institut Fourier},
title = {Universal real locally convex linear topological spaces},
url = {http://eudml.org/doc/73699},
volume = {3},
year = {1951},
}

TY - JOUR
AU - Nikodým, Otton Martin
TI - Universal real locally convex linear topological spaces
JO - Annales de l'institut Fourier
PY - 1951
PB - Association des Annales de l'Institut Fourier
VL - 3
SP - 1
EP - 21
LA - eng
KW - functional analysis
UR - http://eudml.org/doc/73699
ER -

References

top
  1. [1] A. KOLMOGOROFF. Zur Normierbarkeit eines allgemeinen topologischen linearen Raumes. Studia Math. 5 (1934), pp. 29-33. Zbl0010.18202JFM60.1229.02
  2. [2] C. KURATOWSKI. Topologie I. Monografie Matematyczne. Warszawa-Lwów (1933). JFM59.0563.02
  3. [3] P. ALEXANDROFF & H. HOPF. Topologie. Berlin (1935). Zbl0013.07904
  4. [4] N. BOURBAKI. Topologie générale. Chap. I. Structures topologiques. Actual. Sci. et Industr. Hermann, Paris (1940). Zbl0026.43101JFM66.1357.01
  5. [5] J. V. NEUMANN. On complete topological spaces. Trans. Amer. Math. Soc. 37 (1935), pp. 1-20. Zbl0011.16403MR1501776JFM61.0632.04
  6. [6] D. H. HYERS. Pseudo-normed linear spaces and abelian groups. Duke Math. J., vol. 5 (1939), pp. 628-634. Zbl0021.41101MR1,58eJFM65.0498.01
  7. [7] J. P. LA SALLE. Pseudo-normed linear spaces. Duke Math. J., vol. 8, (1941). Zbl0025.06303MR2,221c
  8. [8] E. H. MOORE & H. L. SMITH. A general theory of limits. Amer. J. of Math. 44 (1922), pp. 102-121. Zbl48.1254.01JFM48.1254.01
  9. [9] A. N. WHITEHEAD et BERTRAND RUSSEL. Principia Mathematica. vol. 1. Cambridge (England) Univ. Press. 1910. Zbl0101.24902JFM41.0083.02
  10. [10] H. M. MAC NEILLE. Partially ordered sets. Trans. Amer. Math. Soc. 42. (1937), pp. 416-460. Zbl0017.33904MR1501929JFM63.0833.04
  11. [11] W. D. BERG et O. M. NIKODÝM. On convex sets in abstract linear spaces. I, II (To appear in an american periodical). 
  12. [12] Edward SILVERMAN. Definitions of Lebesgue area for surfaces in metric spaces. Rivista di matematica della Università di Parma (1951), (in print). Zbl0043.05702
  13. [13] Jean DIEUDONNÉ. Sur le théorème de Hahn-Banach. Revue scientifique. 79. N° 12 (1914), pp. 642-643. Zbl0063.01104JFM67.0404.03
  14. [14] S. BANACH. Opérations linéaires (WarszȦwa, 1932). Zbl0005.20901JFM58.0420.01
  15. [15] O. M. NIKODÝM. Criteria for continuity of a linear functional in real linear spaces. (To be published in an american periodical.) 
  16. [16] Leon ALAOGLU. Week topologies of normed linear spaces. Ann. of Math. 41 (1940), pp. 252-267. (Where one can find another universal space for the Banach spaces.) Zbl0023.12902JFM66.0531.01
  17. [17] GARRETT BIRKHOFF. Moore-Smith convergence in general topology. Ann. of Math. 38 (1937), pp. 39-56. Zbl0016.08502JFM63.0567.06
  18. [18] John V. WEHAUSEN. Transformations in linear topological spaces. Duke Math. Journ., vol. 4, 1938, pp. 157-169. Zbl0019.12302

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.