Universal real locally convex linear topological spaces
Annales de l'institut Fourier (1951)
- Volume: 3, page 1-21
- ISSN: 0373-0956
Access Full Article
topAbstract
topHow to cite
topNikodým, Otton Martin. "Universal real locally convex linear topological spaces." Annales de l'institut Fourier 3 (1951): 1-21. <http://eudml.org/doc/73699>.
@article{Nikodým1951,
author = {Nikodým, Otton Martin},
journal = {Annales de l'institut Fourier},
keywords = {functional analysis},
language = {eng},
pages = {1-21},
publisher = {Association des Annales de l'Institut Fourier},
title = {Universal real locally convex linear topological spaces},
url = {http://eudml.org/doc/73699},
volume = {3},
year = {1951},
}
TY - JOUR
AU - Nikodým, Otton Martin
TI - Universal real locally convex linear topological spaces
JO - Annales de l'institut Fourier
PY - 1951
PB - Association des Annales de l'Institut Fourier
VL - 3
SP - 1
EP - 21
LA - eng
KW - functional analysis
UR - http://eudml.org/doc/73699
ER -
References
top- [1] A. KOLMOGOROFF. Zur Normierbarkeit eines allgemeinen topologischen linearen Raumes. Studia Math. 5 (1934), pp. 29-33. Zbl0010.18202JFM60.1229.02
- [2] C. KURATOWSKI. Topologie I. Monografie Matematyczne. Warszawa-Lwów (1933). JFM59.0563.02
- [3] P. ALEXANDROFF & H. HOPF. Topologie. Berlin (1935). Zbl0013.07904
- [4] N. BOURBAKI. Topologie générale. Chap. I. Structures topologiques. Actual. Sci. et Industr. Hermann, Paris (1940). Zbl0026.43101JFM66.1357.01
- [5] J. V. NEUMANN. On complete topological spaces. Trans. Amer. Math. Soc. 37 (1935), pp. 1-20. Zbl0011.16403MR1501776JFM61.0632.04
- [6] D. H. HYERS. Pseudo-normed linear spaces and abelian groups. Duke Math. J., vol. 5 (1939), pp. 628-634. Zbl0021.41101MR1,58eJFM65.0498.01
- [7] J. P. LA SALLE. Pseudo-normed linear spaces. Duke Math. J., vol. 8, (1941). Zbl0025.06303MR2,221c
- [8] E. H. MOORE & H. L. SMITH. A general theory of limits. Amer. J. of Math. 44 (1922), pp. 102-121. Zbl48.1254.01JFM48.1254.01
- [9] A. N. WHITEHEAD et BERTRAND RUSSEL. Principia Mathematica. vol. 1. Cambridge (England) Univ. Press. 1910. Zbl0101.24902JFM41.0083.02
- [10] H. M. MAC NEILLE. Partially ordered sets. Trans. Amer. Math. Soc. 42. (1937), pp. 416-460. Zbl0017.33904MR1501929JFM63.0833.04
- [11] W. D. BERG et O. M. NIKODÝM. On convex sets in abstract linear spaces. I, II (To appear in an american periodical).
- [12] Edward SILVERMAN. Definitions of Lebesgue area for surfaces in metric spaces. Rivista di matematica della Università di Parma (1951), (in print). Zbl0043.05702
- [13] Jean DIEUDONNÉ. Sur le théorème de Hahn-Banach. Revue scientifique. 79. N° 12 (1914), pp. 642-643. Zbl0063.01104JFM67.0404.03
- [14] S. BANACH. Opérations linéaires (WarszȦwa, 1932). Zbl0005.20901JFM58.0420.01
- [15] O. M. NIKODÝM. Criteria for continuity of a linear functional in real linear spaces. (To be published in an american periodical.)
- [16] Leon ALAOGLU. Week topologies of normed linear spaces. Ann. of Math. 41 (1940), pp. 252-267. (Where one can find another universal space for the Banach spaces.) Zbl0023.12902JFM66.0531.01
- [17] GARRETT BIRKHOFF. Moore-Smith convergence in general topology. Ann. of Math. 38 (1937), pp. 39-56. Zbl0016.08502JFM63.0567.06
- [18] John V. WEHAUSEN. Transformations in linear topological spaces. Duke Math. Journ., vol. 4, 1938, pp. 157-169. Zbl0019.12302
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.