Dimensionstheorie und differenzierbare Mannigfaltigkeiten

Friedrich-Wilhelm Bauer

Annales de l'institut Fourier (1962)

  • Volume: 12, page 231-291
  • ISSN: 0373-0956

How to cite

top

Bauer, Friedrich-Wilhelm. "Dimensionstheorie und differenzierbare Mannigfaltigkeiten." Annales de l'institut Fourier 12 (1962): 231-291. <http://eudml.org/doc/73786>.

@article{Bauer1962,
author = {Bauer, Friedrich-Wilhelm},
journal = {Annales de l'institut Fourier},
keywords = {topology},
language = {ger},
pages = {231-291},
publisher = {Association des Annales de l'Institut Fourier},
title = {Dimensionstheorie und differenzierbare Mannigfaltigkeiten},
url = {http://eudml.org/doc/73786},
volume = {12},
year = {1962},
}

TY - JOUR
AU - Bauer, Friedrich-Wilhelm
TI - Dimensionstheorie und differenzierbare Mannigfaltigkeiten
JO - Annales de l'institut Fourier
PY - 1962
PB - Association des Annales de l'Institut Fourier
VL - 12
SP - 231
EP - 291
LA - ger
KW - topology
UR - http://eudml.org/doc/73786
ER -

References

top
  1. [1] P. S. ALEXANDROFF, Dimensionstheorie; Math. Ann. Bd., 106 (1932). Zbl0004.07301JFM58.0624.01
  2. [2] F. W. BAUER, Fortsetzungen von Homologiestrukturen, Math. Ann. Bd., 135, S. 93-114 (1958). Zbl0086.37103MR20 #4262
  3. [3] F. W. BAUER, Spezielle Homologiestrukturen, Math. Ann. Bd., 136, S. 348-364 (1958). Zbl0086.37201MR21 #3842
  4. [4] F. W. BAUER, Tangentialstrukturen, Annales de l'Institut Fourier, Tom IX, S. 111-146 (1959). Zbl0137.42402MR22 #5041
  5. [5] M. F. BOCKSTEIN, Der Satz über universelle Koeffizientenbereiche für Homologiegruppen von Komplexen ohne Torsion, Isw. Akadem. Nauk SSSR (Ser. Mat.) 23, S. 529-564 (1959). Zbl0088.38504
  6. [6] K. NOMIZU, Lie Groups and Differential Geometry, Math. Soc. Japan (1956). Zbl0071.15402MR18,821d
  7. [7] L. S. PONTRJAGIN, Charakteristische Zyklen in differenzierbaren Mannig-faltigkeiten, Mat. Sbornik, 21, S. 233-284 (1947). Zbl0037.10305
  8. [8] K. SITNIKOFF, Kombinatorische Topologie nicht abgeschlossener Mengen I, Mat. Sbornik, 34 (76), S. 3-54 (1054). Zbl0055.16302
  9. [9] K. SITNIKOFF, Kombinatorische Topologie nicht abgeschlossener Mengen II, Mat. Sbornik, 37 (79), S. 385-434 (1955). Zbl0065.16105
  10. [10] H. WHITNEY, Geometric Integration Theory, Princeton Univ. Press (1957). Zbl0083.28204MR19,309c

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.