# De Rham theorems and Neumann decompositions associated with linear partial differential equations

Annales de l'institut Fourier (1964)

- Volume: 14, Issue: 1, page 1-19
- ISSN: 0373-0956

## Access Full Article

top## How to cite

topSpencer, D. C.. "De Rham theorems and Neumann decompositions associated with linear partial differential equations." Annales de l'institut Fourier 14.1 (1964): 1-19. <http://eudml.org/doc/73823>.

@article{Spencer1964,

author = {Spencer, D. C.},

journal = {Annales de l'institut Fourier},

keywords = {partial differential equations equations},

language = {eng},

number = {1},

pages = {1-19},

publisher = {Association des Annales de l'Institut Fourier},

title = {De Rham theorems and Neumann decompositions associated with linear partial differential equations},

url = {http://eudml.org/doc/73823},

volume = {14},

year = {1964},

}

TY - JOUR

AU - Spencer, D. C.

TI - De Rham theorems and Neumann decompositions associated with linear partial differential equations

JO - Annales de l'institut Fourier

PY - 1964

PB - Association des Annales de l'Institut Fourier

VL - 14

IS - 1

SP - 1

EP - 19

LA - eng

KW - partial differential equations equations

UR - http://eudml.org/doc/73823

ER -

## References

top- [1] M. E. ASH, The Neumann problem for multifoliate structure, thesis, Princeton University, (1962) (to appear).
- [2] P. E. CONNER, The Neumann's problem for differential forms on riemannian manifolds, Memoirs of the Amer. Math. Soc., No. 20 (1956). Zbl0070.31404MR17,1197e
- [3] G. F. D. DUFF and D. C. SPENCER, Harmonic tensors on riemannian manifolds with boundary, Annals of Math., vol. 45 (1951), pp. 128-156. Zbl0049.18901
- [4] K. KODAIRA and D. C. SPENCER, Multifoliate structures, Annals of Math., vol. 74 (1961), pp. 52-100. Zbl0123.16401MR26 #5595
- [5] J. J. KOHN, a) Solutions of the $ATT$-Neumann problem on strongly pseudoconvex manifolds, Proc. Nat. Acad. Sci., U.S.A., vol. 47 (1961), pp. 1198-1202. Zbl0123.07803MR24 #A3422
- J. J. KOHN b) Regularity at the boundary of the $ATT$-Neumann problem, Proc. Nat. Acad. Sci., U.S.A., vol. 49 (1963), pp. 206-213. Zbl0118.31101MR26 #6996
- J. J. KOHN c) Harmonic integrals on strongly pseudoconvex manifolds, I, Annals of Math., vol. 78 (1963), pp. 112-148. Zbl0161.09302MR27 #2999
- J. J. KOHN d) Harmonic integrals on strongly pseudoconvex manifolds, II, Annals of Math. (to appear). Zbl0178.11305
- [6] C. B. MORREY, A variational method in the theory of harmonic integrals, II, Amer. Journal of Math., vol. 58 (1956), pp. 137-169. Zbl0070.31402MR19,408a
- [7] A NEWLANDER and. L. NIRENBERG, Complex analytic coordinates in almost complex manifolds, Annals of Math., vol. 65 (1957), pp. 391-404. Zbl0079.16102MR19,577a
- [8] L. NIREMBERG, A complex Frobenius theorem, Seminars on analytic functions, Institute for Advances Study, vol. 1 (1957), pp. 172-179.
- [9] D. C. SPENCER, a) Deformation of structures on manifolds defined by transitive, continuous pseudogroups, I-II, Annals of Math., vol. 76 (1962), pp. 306-445. Zbl0124.38601MR27 #6287a
- D. C. SPENCER b) Deformation of structures on manifolds defined by transitive, continuous pseudogroups. Part III : Structures defined by elliptic pseudogroups (to appear). Zbl0192.29603
- D. C. SPENCER c) Harmonic integrals and Neumann problems associated with linear partial differential equations, in Outlines of the joint Soviet-American Symposium on partial differential equations, August, 1963, Novosibirsk, pp. 253-260.

## Citations in EuDML Documents

top## NotesEmbed ?

topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.