Connexions associated with foliated structures
Annales de l'institut Fourier (1964)
- Volume: 14, Issue: 1, page 43-47
- ISSN: 0373-0956
Access Full Article
topHow to cite
topWillmore, T. J.. "Connexions associated with foliated structures." Annales de l'institut Fourier 14.1 (1964): 43-47. <http://eudml.org/doc/73828>.
@article{Willmore1964,
author = {Willmore, T. J.},
journal = {Annales de l'institut Fourier},
keywords = {Riemannian manifolds},
language = {eng},
number = {1},
pages = {43-47},
publisher = {Association des Annales de l'Institut Fourier},
title = {Connexions associated with foliated structures},
url = {http://eudml.org/doc/73828},
volume = {14},
year = {1964},
}
TY - JOUR
AU - Willmore, T. J.
TI - Connexions associated with foliated structures
JO - Annales de l'institut Fourier
PY - 1964
PB - Association des Annales de l'Institut Fourier
VL - 14
IS - 1
SP - 43
EP - 47
LA - eng
KW - Riemannian manifolds
UR - http://eudml.org/doc/73828
ER -
References
top- [1] A. NIJENHUIS. Jacobi-type identities for bilinear differential concomitants of certain tensor fields. I. Nederl. Akad. Wetensch. Proc. Ser. A. vol. 58 (3) (1955), pp. 390-403. Zbl0068.15001MR17,661c
- [2] A. G. WALKER, Connexions for parallel distributions in the large. Quart. J. Math. Oxford (2), vol. 6 (1955), pp. 301-308. Zbl0066.40203MR19,312e
- [3] A. G. WALKER, Derivation torsionelle et seconde torsion pour une structure presque complex. C.R. Acad. Sci. Paris, vol. 245 (1957) pp. 1213-1215. Zbl0078.14203MR19,680h
- [4] A. G. WALKER, Connexions for parallel distributions in the large. Quart. J. Math Oxford (2), vol. 9 (1958), pp. 221-231. Zbl0093.35702MR20 #6135
- [5] A. G. WALKER, Distributions and Global Connexions. C.B.R.M. Brussels (1959), pp. 63-74. Zbl0095.36804MR23 #A590
- [6] A. G. WALKER, Almost product structures. Differential Geometry, Amer. Math. Soc. (1961), pp. 94-100. Zbl0103.38801MR23 #A1314
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.