Extending regular foliations

J. W. Smith

Annales de l'institut Fourier (1969)

  • Volume: 19, Issue: 2, page 155-168
  • ISSN: 0373-0956

Abstract

top
A p -dimensional foliation F on a differentiable manifold M is said to extend provided there exists a ( p + 1 ) -dimensional foliation F ' on M with F F ' . Our main result asserts that if M and F extends over relatively compact subsets of M .

How to cite

top

Smith, J. W.. "Extending regular foliations." Annales de l'institut Fourier 19.2 (1969): 155-168. <http://eudml.org/doc/73987>.

@article{Smith1969,
abstract = {A $p$-dimensional foliation $F$ on a differentiable manifold $M$ is said to extend provided there exists a $(p+1)$-dimensional foliation $F^\{\prime \}$ on $M$ with $F\subset F^\{\prime \}$. Our main result asserts that if $M$ and $F$ extends over relatively compact subsets of $M$.},
author = {Smith, J. W.},
journal = {Annales de l'institut Fourier},
keywords = {topology},
language = {eng},
number = {2},
pages = {155-168},
publisher = {Association des Annales de l'Institut Fourier},
title = {Extending regular foliations},
url = {http://eudml.org/doc/73987},
volume = {19},
year = {1969},
}

TY - JOUR
AU - Smith, J. W.
TI - Extending regular foliations
JO - Annales de l'institut Fourier
PY - 1969
PB - Association des Annales de l'Institut Fourier
VL - 19
IS - 2
SP - 155
EP - 168
AB - A $p$-dimensional foliation $F$ on a differentiable manifold $M$ is said to extend provided there exists a $(p+1)$-dimensional foliation $F^{\prime }$ on $M$ with $F\subset F^{\prime }$. Our main result asserts that if $M$ and $F$ extends over relatively compact subsets of $M$.
LA - eng
KW - topology
UR - http://eudml.org/doc/73987
ER -

References

top
  1. [EDT] J. R. MUNKRES, Elementary Differential Topology, revised edition, Annals of Math. Study 54, Princeton, N.J., (1966). Zbl0161.20201
  2. [1] C. CHEVALLEY, Theory of Lie Groups, Princeton, (1946). Zbl0063.00842
  3. [2] S. EILENBERG and N. STEENROD, Foundations of Algebraic Topology, Princeton, (1952). Zbl0047.41402MR14,398b
  4. [3] D. HUSEMOLLER, Fibre Bundles, McGraw-Hill, (1966). Zbl0144.44804MR37 #4821
  5. [4] J. W. MILNOR, Lectures on Characteristic Classes, mimeographed notes, Princeton, (1957). 
  6. [5] R. S. PALAIS, A Global Formulation of the Lie Theory of Transformation Groups, Amer. Math. Soc. Memoir 22, (1957). Zbl0178.26502MR22 #12162
  7. [6] J. W. SMITH, The Euler class of generalized vector bundles, Acta Math. 115 (1966), 51-81. Zbl0141.21002MR32 #4704
  8. [7] J. W. SMITH, Submersions of codimension 1, J. of Math. and Mech. 18 (1968), 437-444. Zbl0179.52004MR38 #1689
  9. [8] J. W. SMITH, Commuting vectorfields on open manifolds, Bull. Amer. Math. Soc., 15 (1969), 1013-1016. Zbl0179.52002MR40 #2117
  10. [9] N. STEENROD, The topology of Fibre Bundles, Princeton, (1951). Zbl0054.07103MR12,522b

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.