A note on almost strong liftings

C. Ionescu-Tulcea; R. Maher

Annales de l'institut Fourier (1971)

  • Volume: 21, Issue: 2, page 35-41
  • ISSN: 0373-0956

Abstract

top
Let X be a locally compact space. A lifting ρ of M R ( X , μ ) where μ is a positive measure on X , is almost strong if for each bounded, continuous function f , ρ ( f ) and f coincide locally almost everywhere. We prove here that the set of all measures μ on X such that there exists an almost strong lifting of M R ( X , | μ | ) is a band.

How to cite

top

Ionescu-Tulcea, C., and Maher, R.. "A note on almost strong liftings." Annales de l'institut Fourier 21.2 (1971): 35-41. <http://eudml.org/doc/74037>.

@article{Ionescu1971,
abstract = {Let $X$ be a locally compact space. A lifting $\rho $ of $M^\infty _R(X,\mu )$ where $\mu $ is a positive measure on $X$, is almost strong if for each bounded, continuous function $f$, $\rho (f)$ and $f$ coincide locally almost everywhere. We prove here that the set of all measures $\mu $ on $X$ such that there exists an almost strong lifting of $M^\infty _R(X,|\mu |)$ is a band.},
author = {Ionescu-Tulcea, C., Maher, R.},
journal = {Annales de l'institut Fourier},
language = {eng},
number = {2},
pages = {35-41},
publisher = {Association des Annales de l'Institut Fourier},
title = {A note on almost strong liftings},
url = {http://eudml.org/doc/74037},
volume = {21},
year = {1971},
}

TY - JOUR
AU - Ionescu-Tulcea, C.
AU - Maher, R.
TI - A note on almost strong liftings
JO - Annales de l'institut Fourier
PY - 1971
PB - Association des Annales de l'Institut Fourier
VL - 21
IS - 2
SP - 35
EP - 41
AB - Let $X$ be a locally compact space. A lifting $\rho $ of $M^\infty _R(X,\mu )$ where $\mu $ is a positive measure on $X$, is almost strong if for each bounded, continuous function $f$, $\rho (f)$ and $f$ coincide locally almost everywhere. We prove here that the set of all measures $\mu $ on $X$ such that there exists an almost strong lifting of $M^\infty _R(X,|\mu |)$ is a band.
LA - eng
UR - http://eudml.org/doc/74037
ER -

References

top
  1. [1] K. BICHTELER, An existence theorem for strong liftings, to appear in the J. Math. Anal. and Appl. Zbl0207.12902
  2. [2] K. BICHTELER, On the strong lifting property, in manuscript. Zbl0236.46055
  3. [3] N. BOURBAKI, Intégration, Chap. I-IV (1965), and Chap. v (1967), Hermann, Paris. 
  4. [4] J. DIEUDONNÉ, Sur le théorème de Lebesgue-Nikodym, IV, J. Indian Math. Soc., N.S., 15, 77-86 (1951). Zbl0043.33001MR13,447j
  5. [5] A. IONESCU TULCEA and C. IONESCU TULCEA, On the lifting property, (IV). Disintegration of measures, Ann. Inst. Fourier, 14, 445-472 (1964). Zbl0128.34802
  6. [6] A. IONESCU TULCEA and C. IONESCU TULCEA, On the existence of a lifting commuting with the left translations of an arbitrary locally compact group, Proceedings Fifth Berkeley Symposium on Math. Stat. and Probability, Univ. of California Press (1967). Zbl0201.49202MR35 #2997
  7. [7] A. IONESCU TULCEA and C. IONESCU TULCEA, Topics in the theory of lifting, Ergebnisse der Mathematik und ihrer Grenzgebiete, Band 48 (1969), Springer-Verlag, Berlin. Zbl0179.46303MR43 #2185
  8. [8] R. MAHER, A note on strong liftings, J. Math. Anal. and Appl., 29, 633-639 (1970). Zbl0214.07105MR43 #7584

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.