# A note on almost strong liftings

Annales de l'institut Fourier (1971)

- Volume: 21, Issue: 2, page 35-41
- ISSN: 0373-0956

## Access Full Article

top## Abstract

top## How to cite

topIonescu-Tulcea, C., and Maher, R.. "A note on almost strong liftings." Annales de l'institut Fourier 21.2 (1971): 35-41. <http://eudml.org/doc/74037>.

@article{Ionescu1971,

abstract = {Let $X$ be a locally compact space. A lifting $\rho $ of $M^\infty _R(X,\mu )$ where $\mu $ is a positive measure on $X$, is almost strong if for each bounded, continuous function $f$, $\rho (f)$ and $f$ coincide locally almost everywhere. We prove here that the set of all measures $\mu $ on $X$ such that there exists an almost strong lifting of $M^\infty _R(X,|\mu |)$ is a band.},

author = {Ionescu-Tulcea, C., Maher, R.},

journal = {Annales de l'institut Fourier},

language = {eng},

number = {2},

pages = {35-41},

publisher = {Association des Annales de l'Institut Fourier},

title = {A note on almost strong liftings},

url = {http://eudml.org/doc/74037},

volume = {21},

year = {1971},

}

TY - JOUR

AU - Ionescu-Tulcea, C.

AU - Maher, R.

TI - A note on almost strong liftings

JO - Annales de l'institut Fourier

PY - 1971

PB - Association des Annales de l'Institut Fourier

VL - 21

IS - 2

SP - 35

EP - 41

AB - Let $X$ be a locally compact space. A lifting $\rho $ of $M^\infty _R(X,\mu )$ where $\mu $ is a positive measure on $X$, is almost strong if for each bounded, continuous function $f$, $\rho (f)$ and $f$ coincide locally almost everywhere. We prove here that the set of all measures $\mu $ on $X$ such that there exists an almost strong lifting of $M^\infty _R(X,|\mu |)$ is a band.

LA - eng

UR - http://eudml.org/doc/74037

ER -

## References

top- [1] K. BICHTELER, An existence theorem for strong liftings, to appear in the J. Math. Anal. and Appl. Zbl0207.12902
- [2] K. BICHTELER, On the strong lifting property, in manuscript. Zbl0236.46055
- [3] N. BOURBAKI, Intégration, Chap. I-IV (1965), and Chap. v (1967), Hermann, Paris.
- [4] J. DIEUDONNÉ, Sur le théorème de Lebesgue-Nikodym, IV, J. Indian Math. Soc., N.S., 15, 77-86 (1951). Zbl0043.33001MR13,447j
- [5] A. IONESCU TULCEA and C. IONESCU TULCEA, On the lifting property, (IV). Disintegration of measures, Ann. Inst. Fourier, 14, 445-472 (1964). Zbl0128.34802
- [6] A. IONESCU TULCEA and C. IONESCU TULCEA, On the existence of a lifting commuting with the left translations of an arbitrary locally compact group, Proceedings Fifth Berkeley Symposium on Math. Stat. and Probability, Univ. of California Press (1967). Zbl0201.49202MR35 #2997
- [7] A. IONESCU TULCEA and C. IONESCU TULCEA, Topics in the theory of lifting, Ergebnisse der Mathematik und ihrer Grenzgebiete, Band 48 (1969), Springer-Verlag, Berlin. Zbl0179.46303MR43 #2185
- [8] R. MAHER, A note on strong liftings, J. Math. Anal. and Appl., 29, 633-639 (1970). Zbl0214.07105MR43 #7584

## NotesEmbed ?

topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.