The Markov property for generalized gaussian random fields

G. Kallianpur; V. Mandrekar

Annales de l'institut Fourier (1974)

  • Volume: 24, Issue: 2, page 143-167
  • ISSN: 0373-0956

Abstract

top
We obtain necessary and sufficient conditions in order that a Gaussian process of many parameters (more generally, a generalized Gaussian random field in R n ) possess the Markov property relative to a class of open sets. The method adopted is the Hilbert space approach initiated by Cartier and Pitt. Applications are discussed.

How to cite

top

Kallianpur, G., and Mandrekar, V.. "The Markov property for generalized gaussian random fields." Annales de l'institut Fourier 24.2 (1974): 143-167. <http://eudml.org/doc/74168>.

@article{Kallianpur1974,
abstract = {We obtain necessary and sufficient conditions in order that a Gaussian process of many parameters (more generally, a generalized Gaussian random field in $R^n$) possess the Markov property relative to a class of open sets. The method adopted is the Hilbert space approach initiated by Cartier and Pitt. Applications are discussed.},
author = {Kallianpur, G., Mandrekar, V.},
journal = {Annales de l'institut Fourier},
language = {eng},
number = {2},
pages = {143-167},
publisher = {Association des Annales de l'Institut Fourier},
title = {The Markov property for generalized gaussian random fields},
url = {http://eudml.org/doc/74168},
volume = {24},
year = {1974},
}

TY - JOUR
AU - Kallianpur, G.
AU - Mandrekar, V.
TI - The Markov property for generalized gaussian random fields
JO - Annales de l'institut Fourier
PY - 1974
PB - Association des Annales de l'Institut Fourier
VL - 24
IS - 2
SP - 143
EP - 167
AB - We obtain necessary and sufficient conditions in order that a Gaussian process of many parameters (more generally, a generalized Gaussian random field in $R^n$) possess the Markov property relative to a class of open sets. The method adopted is the Hilbert space approach initiated by Cartier and Pitt. Applications are discussed.
LA - eng
UR - http://eudml.org/doc/74168
ER -

References

top
  1. [1] S. AGMON, Lectures on Elliptic Boundary Value Problems, Van Nostrand, 1965. Zbl0142.37401MR31 #2504
  2. [2] P. ASSOUAD, Étude d'un espace reproduisant attaché au mouvement brownian à paramètre temporel dans Rn, C.R. Acad. Sc., Paris, 269 (1969), 36-37. Zbl0204.50702MR39 #6401
  3. [3] P. CARTIER, Introduction à l'étude des mouvements Browniens à plusieurs paramètres, Séminaire de Probabilités V, Springer-Verlag, (#191), (1971), 58-75. 
  4. [4] A. FRIEDMAN, Generalized Functions and Partial Differential Equations, Prentice-Hall, 1963. Zbl0116.07002MR29 #2672
  5. [5] H. P. MCKEAN Jr, Brownian motion with a several dimensional time, Theory Prob. Applications, 8 (1963), 335-354. Zbl0124.08702MR28 #641
  6. [6] G. M. MOLCHAN, On some problems concerning Brownian motion in Lévy's sense, Theory Prob. Applications, 12 (1967), 682-690. Zbl0159.46504
  7. [7] G. M. MOLCHAN, Characterization of Gaussian fields with Markovian property, Dokl. Akad. Nauk SSSR, 197 (1971). Translation Soviet Math. Dokl, 12 (1971), 563-567. Zbl0236.60031
  8. [8] J. PEETRE, Rectification à l'article «une caractérisation abstraite des opérateurs différentiels», Math. Scan, 8 (1960), 116-120. Zbl0097.10402MR23 #A1923
  9. [9] L. PITT, A Markov property for Gaussian processes with a multidimensional time, J. Rational Mech. and Anal, (1971), 368-391. Zbl0277.60025
  10. [10] F. TREVES, Topological Vector Spaces, Distributions and Kernels, Academic Press, 1967. Zbl0171.10402MR37 #726

Citations in EuDML Documents

top
  1. Daniel Roux, Analyse multi-échelle d'un processus gaussien markovien au voisinage d'une singularité
  2. Vidyadhar Mandrekar, Germ-field Markov property for multiparameter processes
  3. Francesco Russo, Étude de la propriété de Markov étroite en relation avec les processus planaires à accroissements indépendants
  4. Albert Benassi, Processus gaussiens, markoviens d'ordre p, fortement markoviens d'ordre p et problème de Dirichlet stochastique
  5. Heinrich V. Weizsäcker, Exchanging the order of taking suprema and countable intersections of σ-algebras

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.