Strassen's law of the iterated logarithm

James D. Kuelbs

Annales de l'institut Fourier (1974)

  • Volume: 24, Issue: 2, page 169-177
  • ISSN: 0373-0956

Abstract

top
Strassen’s functional form of the law of the iterated logarithm is formulated for partial sums of random variables with values in a strict inductive limit of Frechet spaces of Hilbert space type. The proof depends on obtaining Berry-Essen estimates for Hilbert space valued random variables.

How to cite

top

Kuelbs, James D.. "Strassen's law of the iterated logarithm." Annales de l'institut Fourier 24.2 (1974): 169-177. <http://eudml.org/doc/74169>.

@article{Kuelbs1974,
abstract = {Strassen’s functional form of the law of the iterated logarithm is formulated for partial sums of random variables with values in a strict inductive limit of Frechet spaces of Hilbert space type. The proof depends on obtaining Berry-Essen estimates for Hilbert space valued random variables.},
author = {Kuelbs, James D.},
journal = {Annales de l'institut Fourier},
language = {eng},
number = {2},
pages = {169-177},
publisher = {Association des Annales de l'Institut Fourier},
title = {Strassen's law of the iterated logarithm},
url = {http://eudml.org/doc/74169},
volume = {24},
year = {1974},
}

TY - JOUR
AU - Kuelbs, James D.
TI - Strassen's law of the iterated logarithm
JO - Annales de l'institut Fourier
PY - 1974
PB - Association des Annales de l'Institut Fourier
VL - 24
IS - 2
SP - 169
EP - 177
AB - Strassen’s functional form of the law of the iterated logarithm is formulated for partial sums of random variables with values in a strict inductive limit of Frechet spaces of Hilbert space type. The proof depends on obtaining Berry-Essen estimates for Hilbert space valued random variables.
LA - eng
UR - http://eudml.org/doc/74169
ER -

References

top
  1. [1] J. CHOVER, On Strassen's version of the log log law, Z. W. verw. Geb., Vol. 8 (1967), 83-90. Zbl0169.20901MR36 #930
  2. [2] R. DUDLEY, J. FELDMAN, L. LE CAM, On seminorms and probabilities, and abstract Wiener space, Annals of Math., Vol. 93 (1971), 390-408. Zbl0193.44603MR43 #4995
  3. [3] L. GROSS, Lectures in modern analysis and applications II, vol. 140, Lecture notes in mathematics, Springer-Verlag, New York. 
  4. [4] J. KUELBS, Some results for probability measures on linear topological vector spaces with an application to Strassen's log log law, Journal of Functional Analysis, Vol. 14 (1973), 28-43. Zbl0292.60007MR50 #8628
  5. [5] J. KUELBS and R. LE PAGE, The law of the iterated logarithm for Brownian motion in a Banach space, to appear in The Trans. Amer. Math. Soc. Zbl0278.60052
  6. [6] V. SAZANOV, On the ω2 test, Sankhya (ser. A), Vol. 30 (1968), 204-209. 
  7. [7] V. SAZANOV, An improvement of a convergence-rate estimate, The Thy. of Prob. and its applications, Vol. 14 (1969), 640-651. Zbl0204.51205
  8. [8] V. STRASSEN, An invariance principle for the law of the iterated logarithm, Z. W. verw. Geb., Vol. 3 (1964), 211-226. Zbl0132.12903MR30 #5379
  9. [9] J. KUELBS and T. KURTZ, Berry-Essen Estimates in Hilbert Space and an Application to the Law of the Iterated Logarithm, to appear in the Annals of Probability. Zbl0298.60017

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.