On the divergence of certain integrals of the Wiener process
Lawrence A. Shepp; John R. Klauder; Hiroshi Ezawa
Annales de l'institut Fourier (1974)
- Volume: 24, Issue: 2, page 189-193
- ISSN: 0373-0956
Access Full Article
topAbstract
topHow to cite
topShepp, Lawrence A., Klauder, John R., and Ezawa, Hiroshi. "On the divergence of certain integrals of the Wiener process." Annales de l'institut Fourier 24.2 (1974): 189-193. <http://eudml.org/doc/74171>.
@article{Shepp1974,
abstract = {Let $f(x)$ be a nonnegative function with its only singularity at $x=0$, e.g. $f(x)=\vert x\vert ^\{-\alpha \}$, $\alpha >0$. We study the behavior of the Wiener process $W(t)$ in left and right hand neighborhoods of level crossings by finding necessary and sufficient conditions on $f$ for the integrals of $f(W(t))$ to be finite or infinite.},
author = {Shepp, Lawrence A., Klauder, John R., Ezawa, Hiroshi},
journal = {Annales de l'institut Fourier},
language = {eng},
number = {2},
pages = {189-193},
publisher = {Association des Annales de l'Institut Fourier},
title = {On the divergence of certain integrals of the Wiener process},
url = {http://eudml.org/doc/74171},
volume = {24},
year = {1974},
}
TY - JOUR
AU - Shepp, Lawrence A.
AU - Klauder, John R.
AU - Ezawa, Hiroshi
TI - On the divergence of certain integrals of the Wiener process
JO - Annales de l'institut Fourier
PY - 1974
PB - Association des Annales de l'Institut Fourier
VL - 24
IS - 2
SP - 189
EP - 193
AB - Let $f(x)$ be a nonnegative function with its only singularity at $x=0$, e.g. $f(x)=\vert x\vert ^{-\alpha }$, $\alpha >0$. We study the behavior of the Wiener process $W(t)$ in left and right hand neighborhoods of level crossings by finding necessary and sufficient conditions on $f$ for the integrals of $f(W(t))$ to be finite or infinite.
LA - eng
UR - http://eudml.org/doc/74171
ER -
References
top- [EKS] H. EZAWA, J. R. KLAUDER and L. A. SHEPP, Vestigial Effects of Singular Potentials in Diffusion Theory and Quantum Mechanics. J. Math. Phys., to appear.
- [IMcK] K. ITO and H. P. McKEAN, Diffusion Processes and Their Sample Paths, Springer (1965). Zbl0127.09503MR33 #8031
- [KI] J. R. KLAUDER, Field Structure Through Model Studies: Aspects of Nonrenormalizable Theories, Acta Phys. Austriaca, Suppl. XI (1973), 341-387.
- [Kn] F. B. KNIGHT, Existence of Small Oscillations at Zeros of Brownian Motion, manuscript. Zbl0305.60035
- [R] D. RAY, Sojourn Times of Diffusion Processes, Ill. J. Math., 7 (1963), 615-630. Zbl0118.13403MR27 #6306
- [S] L. A. SHEPP, Radon-Nikodym Derivatives of Gaussian Measures, Ann. Math. Stat., 37 (1966), 321-354. Zbl0142.13901MR32 #8408
- [V] D. E. VARBERG, Equivalent Gaussian Measures with a Particularly Simple Radon-Nikodym Derivative, Ann. Math. Stat., 38 (1967), 1027-1030. Zbl0171.15702MR35 #4981
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.