On the divergence of certain integrals of the Wiener process

Lawrence A. Shepp; John R. Klauder; Hiroshi Ezawa

Annales de l'institut Fourier (1974)

  • Volume: 24, Issue: 2, page 189-193
  • ISSN: 0373-0956

Abstract

top
Let f ( x ) be a nonnegative function with its only singularity at x = 0 , e.g. f ( x ) = | x | - α , α > 0 . We study the behavior of the Wiener process W ( t ) in left and right hand neighborhoods of level crossings by finding necessary and sufficient conditions on f for the integrals of f ( W ( t ) ) to be finite or infinite.

How to cite

top

Shepp, Lawrence A., Klauder, John R., and Ezawa, Hiroshi. "On the divergence of certain integrals of the Wiener process." Annales de l'institut Fourier 24.2 (1974): 189-193. <http://eudml.org/doc/74171>.

@article{Shepp1974,
abstract = {Let $f(x)$ be a nonnegative function with its only singularity at $x=0$, e.g. $f(x)=\vert x\vert ^\{-\alpha \}$, $\alpha &gt;0$. We study the behavior of the Wiener process $W(t)$ in left and right hand neighborhoods of level crossings by finding necessary and sufficient conditions on $f$ for the integrals of $f(W(t))$ to be finite or infinite.},
author = {Shepp, Lawrence A., Klauder, John R., Ezawa, Hiroshi},
journal = {Annales de l'institut Fourier},
language = {eng},
number = {2},
pages = {189-193},
publisher = {Association des Annales de l'Institut Fourier},
title = {On the divergence of certain integrals of the Wiener process},
url = {http://eudml.org/doc/74171},
volume = {24},
year = {1974},
}

TY - JOUR
AU - Shepp, Lawrence A.
AU - Klauder, John R.
AU - Ezawa, Hiroshi
TI - On the divergence of certain integrals of the Wiener process
JO - Annales de l'institut Fourier
PY - 1974
PB - Association des Annales de l'Institut Fourier
VL - 24
IS - 2
SP - 189
EP - 193
AB - Let $f(x)$ be a nonnegative function with its only singularity at $x=0$, e.g. $f(x)=\vert x\vert ^{-\alpha }$, $\alpha &gt;0$. We study the behavior of the Wiener process $W(t)$ in left and right hand neighborhoods of level crossings by finding necessary and sufficient conditions on $f$ for the integrals of $f(W(t))$ to be finite or infinite.
LA - eng
UR - http://eudml.org/doc/74171
ER -

References

top
  1. [EKS] H. EZAWA, J. R. KLAUDER and L. A. SHEPP, Vestigial Effects of Singular Potentials in Diffusion Theory and Quantum Mechanics. J. Math. Phys., to appear. 
  2. [IMcK] K. ITO and H. P. McKEAN, Diffusion Processes and Their Sample Paths, Springer (1965). Zbl0127.09503MR33 #8031
  3. [KI] J. R. KLAUDER, Field Structure Through Model Studies: Aspects of Nonrenormalizable Theories, Acta Phys. Austriaca, Suppl. XI (1973), 341-387. 
  4. [Kn] F. B. KNIGHT, Existence of Small Oscillations at Zeros of Brownian Motion, manuscript. Zbl0305.60035
  5. [R] D. RAY, Sojourn Times of Diffusion Processes, Ill. J. Math., 7 (1963), 615-630. Zbl0118.13403MR27 #6306
  6. [S] L. A. SHEPP, Radon-Nikodym Derivatives of Gaussian Measures, Ann. Math. Stat., 37 (1966), 321-354. Zbl0142.13901MR32 #8408
  7. [V] D. E. VARBERG, Equivalent Gaussian Measures with a Particularly Simple Radon-Nikodym Derivative, Ann. Math. Stat., 38 (1967), 1027-1030. Zbl0171.15702MR35 #4981

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.