Convergence on almost every line for functions with gradient in L p ( 𝐑 n )

Charles Fefferman

Annales de l'institut Fourier (1974)

  • Volume: 24, Issue: 3, page 159-164
  • ISSN: 0373-0956

Abstract

top
We prove that if grad ( f ) L p ( R n ) for certain values of p , then lim x 1 f ( x 1 , x 2 , ... , x n ) = const., a.e. in R n - 1 .

How to cite

top

Fefferman, Charles. "Convergence on almost every line for functions with gradient in $L^p({\bf R}^n)$." Annales de l'institut Fourier 24.3 (1974): 159-164. <http://eudml.org/doc/74181>.

@article{Fefferman1974,
abstract = {We prove that if $\{\rm grad\}\,(f)\in L^p(R^n)$ for certain values of $p$, then\begin\{\}\lim \_\{x\_1\rightarrow \infty \}f(x\_1,x\_2,\ldots ,x\_n)=~\text\{const.,\} \text\{a.e.\} \text\{in\}~ R^\{n-1\}.\end\{\}},
author = {Fefferman, Charles},
journal = {Annales de l'institut Fourier},
language = {eng},
number = {3},
pages = {159-164},
publisher = {Association des Annales de l'Institut Fourier},
title = {Convergence on almost every line for functions with gradient in $L^p(\{\bf R\}^n)$},
url = {http://eudml.org/doc/74181},
volume = {24},
year = {1974},
}

TY - JOUR
AU - Fefferman, Charles
TI - Convergence on almost every line for functions with gradient in $L^p({\bf R}^n)$
JO - Annales de l'institut Fourier
PY - 1974
PB - Association des Annales de l'Institut Fourier
VL - 24
IS - 3
SP - 159
EP - 164
AB - We prove that if ${\rm grad}\,(f)\in L^p(R^n)$ for certain values of $p$, then\begin{}\lim _{x_1\rightarrow \infty }f(x_1,x_2,\ldots ,x_n)=~\text{const.,} \text{a.e.} \text{in}~ R^{n-1}.\end{}
LA - eng
UR - http://eudml.org/doc/74181
ER -

References

top
  1. [1] L.D. KUDRJAVCEV, Svoǐctba graničnyh značeniǐ funkciǐ iz vesovyh prostranctv i ih priloženija k kraevym zadačam. Mehanika Splošnoǐ sredy i rodstvennye problemy analiza. Moskva 1972. 
  2. [2] S.V. USPENSKIǏ, O teoremah vloženija dlja vesovyh klassov, Trudi Mat. Instta AN SSSR, 60 (1961), 282-303. 
  3. [3] V. PORTNOV, Doklady AN SSSR, to appear. 

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.