# Decomposition in the large of two-forms of constant rank

Annales de l'institut Fourier (1974)

- Volume: 24, Issue: 3, page 317-335
- ISSN: 0373-0956

## Access Full Article

top## Abstract

top## How to cite

topDibag, Ibrahim. "Decomposition in the large of two-forms of constant rank." Annales de l'institut Fourier 24.3 (1974): 317-335. <http://eudml.org/doc/74189>.

@article{Dibag1974,

abstract = {The purpose of this paper is to find necessary and sufficient conditions for globally-decomposing an exterior 2-form $w$, of constant rank $2s$, on a vector-bundle $E$, as a sum :\begin\{\}w=y\_1\wedge y\_\{s+1\}+\cdots +y\_s\wedge y\_\{2s\}.\end\{\}The general theory is applied to low dimensional manifolds, spheres, real and complex projective spaces.},

author = {Dibag, Ibrahim},

journal = {Annales de l'institut Fourier},

language = {eng},

number = {3},

pages = {317-335},

publisher = {Association des Annales de l'Institut Fourier},

title = {Decomposition in the large of two-forms of constant rank},

url = {http://eudml.org/doc/74189},

volume = {24},

year = {1974},

}

TY - JOUR

AU - Dibag, Ibrahim

TI - Decomposition in the large of two-forms of constant rank

JO - Annales de l'institut Fourier

PY - 1974

PB - Association des Annales de l'Institut Fourier

VL - 24

IS - 3

SP - 317

EP - 335

AB - The purpose of this paper is to find necessary and sufficient conditions for globally-decomposing an exterior 2-form $w$, of constant rank $2s$, on a vector-bundle $E$, as a sum :\begin{}w=y_1\wedge y_{s+1}+\cdots +y_s\wedge y_{2s}.\end{}The general theory is applied to low dimensional manifolds, spheres, real and complex projective spaces.

LA - eng

UR - http://eudml.org/doc/74189

ER -

## References

top- [1] A. BOREL, Sur La Cohomologie des Espaces Fibre Principaux..., Ann. Math., 57 (1953), 115-207. Zbl0052.40001MR14,490e
- [2] A. BOREL, F. HIRZEBRUCH, Characteristic Classes and Homogenous Spaces I, Amer. J. Math., 80 (1958), 459-538. Zbl0097.36401
- [3] J. MARTINET, Sur Les Singularités des Formes Differentiables, Thesis Grenoble (1969).
- [4] W.S. MASSEY, Obstructions to the Existence of Almost-Complex Structures, Bull. Amer. Math. Soc, 67 (1961), 559-564. Zbl0192.29601MR24 #A2971
- [5] C.E. MILLER, The Topology of Rotation Groups, Ann. Math, 57 (1953), 91-114. Zbl0050.17503MR14,673b
- [6] MOSHER-TANGORA, Cohomology Operations and Application in Homotopy Theory, Harper-Row Publishers (1968). Zbl0153.53302
- [7] N.E. STEENROD, The Topology of Fibre-Bundles, Princeton Univ. Press (1951). Zbl0054.07103MR12,522b
- [8] N.E. STEENROD, Cohomology Operations, Annals of Math Studies, n° 50. Zbl0102.38104MR26 #3056
- [9] S. STERNBERG, Lectures on Differential Geometry, Prentice Hall Edition (1964). Zbl0129.13102MR33 #1797
- [10] E. THOMAS, Complex-Structures on Real Vector-Bundles, Amer. J. Math., 89 (1967), 887-907. Zbl0174.54802MR36 #3375

## NotesEmbed ?

topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.