Some characterizations of ultrabornological spaces
Annales de l'institut Fourier (1974)
- Volume: 24, Issue: 3, page 57-66
- ISSN: 0373-0956
Access Full Article
topAbstract
topHow to cite
topValdivia, Manuel. "Some characterizations of ultrabornological spaces." Annales de l'institut Fourier 24.3 (1974): 57-66. <http://eudml.org/doc/74192>.
@article{Valdivia1974,
abstract = {Let $U$ be an infinite-dimensional separable Fréchet space with a topology defined by a family of norms. Let $F$ be an infinite-dimensional Banach space. Then $F$ is the inductive limit of a family of spaces equal to $E$. The choice of suitable classes of Fréchet spaces allows to give characterizations of ultrabornological spaces using the result above.. Let $\Omega $ be a non-empty open set in the euclidean $n$-dimensional space $R^n$. Then $F$ is the inductive limit of a family of spaces equal to $\{\bf D\}(\Omega )$.},
author = {Valdivia, Manuel},
journal = {Annales de l'institut Fourier},
language = {eng},
number = {3},
pages = {57-66},
publisher = {Association des Annales de l'Institut Fourier},
title = {Some characterizations of ultrabornological spaces},
url = {http://eudml.org/doc/74192},
volume = {24},
year = {1974},
}
TY - JOUR
AU - Valdivia, Manuel
TI - Some characterizations of ultrabornological spaces
JO - Annales de l'institut Fourier
PY - 1974
PB - Association des Annales de l'Institut Fourier
VL - 24
IS - 3
SP - 57
EP - 66
AB - Let $U$ be an infinite-dimensional separable Fréchet space with a topology defined by a family of norms. Let $F$ be an infinite-dimensional Banach space. Then $F$ is the inductive limit of a family of spaces equal to $E$. The choice of suitable classes of Fréchet spaces allows to give characterizations of ultrabornological spaces using the result above.. Let $\Omega $ be a non-empty open set in the euclidean $n$-dimensional space $R^n$. Then $F$ is the inductive limit of a family of spaces equal to ${\bf D}(\Omega )$.
LA - eng
UR - http://eudml.org/doc/74192
ER -
References
top- [1] A.I. MARKUSHEVICH, Sur les bases (au sens large) dans les espaces linéaires, Doklady Akad. Nauk SSSR (N.S.), 41, (1934) 227-229. Zbl0061.24701
- [2] J.T. MARTI, Introduction to the Theory of Bases, Springer-Verlag, Berlin-Heidelberg-New York, 1969. Zbl0191.41301MR55 #10994
- [3] A. GROTHENDIECK, Produits tensoriels topologiques et espaces nucléaires, Mem. Amer. Math. Soc., No. 16 (1966). Zbl0123.30301
- [4] M. VALDIVIA, A class of precompact sets in Banach spaces., J. reine angew. Math. (To appear). Zbl0306.46024
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.