Some characterizations of ultrabornological spaces

Manuel Valdivia

Annales de l'institut Fourier (1974)

  • Volume: 24, Issue: 3, page 57-66
  • ISSN: 0373-0956

Abstract

top
Let U be an infinite-dimensional separable Fréchet space with a topology defined by a family of norms. Let F be an infinite-dimensional Banach space. Then F is the inductive limit of a family of spaces equal to E . The choice of suitable classes of Fréchet spaces allows to give characterizations of ultrabornological spaces using the result above.. Let Ω be a non-empty open set in the euclidean n -dimensional space R n . Then F is the inductive limit of a family of spaces equal to D ( Ω ) .

How to cite

top

Valdivia, Manuel. "Some characterizations of ultrabornological spaces." Annales de l'institut Fourier 24.3 (1974): 57-66. <http://eudml.org/doc/74192>.

@article{Valdivia1974,
abstract = {Let $U$ be an infinite-dimensional separable Fréchet space with a topology defined by a family of norms. Let $F$ be an infinite-dimensional Banach space. Then $F$ is the inductive limit of a family of spaces equal to $E$. The choice of suitable classes of Fréchet spaces allows to give characterizations of ultrabornological spaces using the result above.. Let $\Omega $ be a non-empty open set in the euclidean $n$-dimensional space $R^n$. Then $F$ is the inductive limit of a family of spaces equal to $\{\bf D\}(\Omega )$.},
author = {Valdivia, Manuel},
journal = {Annales de l'institut Fourier},
language = {eng},
number = {3},
pages = {57-66},
publisher = {Association des Annales de l'Institut Fourier},
title = {Some characterizations of ultrabornological spaces},
url = {http://eudml.org/doc/74192},
volume = {24},
year = {1974},
}

TY - JOUR
AU - Valdivia, Manuel
TI - Some characterizations of ultrabornological spaces
JO - Annales de l'institut Fourier
PY - 1974
PB - Association des Annales de l'Institut Fourier
VL - 24
IS - 3
SP - 57
EP - 66
AB - Let $U$ be an infinite-dimensional separable Fréchet space with a topology defined by a family of norms. Let $F$ be an infinite-dimensional Banach space. Then $F$ is the inductive limit of a family of spaces equal to $E$. The choice of suitable classes of Fréchet spaces allows to give characterizations of ultrabornological spaces using the result above.. Let $\Omega $ be a non-empty open set in the euclidean $n$-dimensional space $R^n$. Then $F$ is the inductive limit of a family of spaces equal to ${\bf D}(\Omega )$.
LA - eng
UR - http://eudml.org/doc/74192
ER -

References

top
  1. [1] A.I. MARKUSHEVICH, Sur les bases (au sens large) dans les espaces linéaires, Doklady Akad. Nauk SSSR (N.S.), 41, (1934) 227-229. Zbl0061.24701
  2. [2] J.T. MARTI, Introduction to the Theory of Bases, Springer-Verlag, Berlin-Heidelberg-New York, 1969. Zbl0191.41301MR55 #10994
  3. [3] A. GROTHENDIECK, Produits tensoriels topologiques et espaces nucléaires, Mem. Amer. Math. Soc., No. 16 (1966). Zbl0123.30301
  4. [4] M. VALDIVIA, A class of precompact sets in Banach spaces., J. reine angew. Math. (To appear). Zbl0306.46024

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.