Three spectral notions for representations of commutative Banach algebras

Yngve Domar; Lars-Ake Lindahl

Annales de l'institut Fourier (1975)

  • Volume: 25, Issue: 2, page 1-32
  • ISSN: 0373-0956

Abstract

top
Let T be a bounded representation of a commutative Banach algebra B . The following spectral sets are studied. Λ 1 ( T ) : the Gelfand space of the quotient algebra B / Ker T . Λ 2 ( T ) : the Gelfand space of the operator algebra Im T . Λ 3 ( T ) : those characters φ of B for which the inequalities T b x - b ^ ( φ ) x < ϵ x , b F , have a common solution x 0 , for any ϵ > 0 and any finite subset F of B . A theorem of Beurling on the spectrum of L -functions and results of Slodkowski and Zelazko on joint topological divisors of zero appear as special cases of our theory by taking for T the regular representation and its adjoint.

How to cite

top

Domar, Yngve, and Lindahl, Lars-Ake. "Three spectral notions for representations of commutative Banach algebras." Annales de l'institut Fourier 25.2 (1975): 1-32. <http://eudml.org/doc/74222>.

@article{Domar1975,
abstract = {Let $T$ be a bounded representation of a commutative Banach algebra $B$. The following spectral sets are studied. $\Lambda _1(T)$: the Gelfand space of the quotient algebra $B/\{\rm Ker\}\ T$. $\Lambda _2(T)$: the Gelfand space of the operator algebra $\{\rm Im\}\ T$. $\Lambda _3(T)$: those characters $\varphi $ of $B$ for which the inequalities $\Vert T_bx - \hat\{b\}(\varphi )x\Vert &lt; \varepsilon \Vert x\Vert $, $b\in F$, have a common solution $x\ne 0$, for any $\varepsilon &gt;0$ and any finite subset $F$ of $B$. A theorem of Beurling on the spectrum of $L^\infty $-functions and results of Slodkowski and Zelazko on joint topological divisors of zero appear as special cases of our theory by taking for $T$ the regular representation and its adjoint.},
author = {Domar, Yngve, Lindahl, Lars-Ake},
journal = {Annales de l'institut Fourier},
language = {eng},
number = {2},
pages = {1-32},
publisher = {Association des Annales de l'Institut Fourier},
title = {Three spectral notions for representations of commutative Banach algebras},
url = {http://eudml.org/doc/74222},
volume = {25},
year = {1975},
}

TY - JOUR
AU - Domar, Yngve
AU - Lindahl, Lars-Ake
TI - Three spectral notions for representations of commutative Banach algebras
JO - Annales de l'institut Fourier
PY - 1975
PB - Association des Annales de l'Institut Fourier
VL - 25
IS - 2
SP - 1
EP - 32
AB - Let $T$ be a bounded representation of a commutative Banach algebra $B$. The following spectral sets are studied. $\Lambda _1(T)$: the Gelfand space of the quotient algebra $B/{\rm Ker}\ T$. $\Lambda _2(T)$: the Gelfand space of the operator algebra ${\rm Im}\ T$. $\Lambda _3(T)$: those characters $\varphi $ of $B$ for which the inequalities $\Vert T_bx - \hat{b}(\varphi )x\Vert &lt; \varepsilon \Vert x\Vert $, $b\in F$, have a common solution $x\ne 0$, for any $\varepsilon &gt;0$ and any finite subset $F$ of $B$. A theorem of Beurling on the spectrum of $L^\infty $-functions and results of Slodkowski and Zelazko on joint topological divisors of zero appear as special cases of our theory by taking for $T$ the regular representation and its adjoint.
LA - eng
UR - http://eudml.org/doc/74222
ER -

References

top
  1. [1] R. ARENS, Extensions of Banach algebras, Pacific J. Math., 10 (1960), 1-16. Zbl0095.09801MR23 #A4031
  2. [2] A. BEURLING, Un théorème sur les fonctions bornées et uniformément continues sur l'axe réel, Acta Math., 77 (1945), 127-136. Zbl0061.13311MR7,61f
  3. [3] M.D. CHOI and C. DAVIS, The spectral mapping theorem for joint approximate point spectrum, Bull. Amer. Math. Soc., 80 (1974), 317-321. Zbl0276.47001MR48 #12104
  4. [4] J. DIXMIER, Sur un théorème de Banach, Duke Math. J., 15 (1948), 1057-1071. Zbl0031.36301MR10,306g
  5. [5] Y. DOMAR, Harmonic analysis based on certain commutative Banach algebras, Acta Math., 96 (1956), 1-66. Zbl0071.11302MR17,1228a
  6. [6] Y. DOMAR, On spectral analysis in the narrow topology, Math. Scand., 4 (1956), 328-332. Zbl0078.29401MR19,413b
  7. [7] Y. DOMAR, Some results on narrow spectral analysis, Math. Scand., 20 (1967), 5-18. Zbl0166.11201MR36 #690
  8. [8] V.P. GURARII, Spectral synthesis of bounded functions on the half-axis, Funkcional. Anal. i Prilozen, 3 n° 4 (1969), 34-48 (= Functional Anal. Appl., 3 (1969), 282-294). Zbl0205.42304MR41 #743b
  9. [9] L-Å. LINDAHL, On narrow spectral analysis, Math. Scand., 26 (1970), 149-164. Zbl0189.44601MR41 #5893
  10. [10] L-Å. LINDAHL, On ideals of joint topological divisors of zero, to appear in Studia Math., 53. Zbl0268.46049MR51 #13693
  11. [11] Yu. I. LYUBICH, On the spectrum of a representation of an abelian topological group, Dokl. Akad. Nauk. SSSR, 200 (1971), 777-780 (= Soviet Math. Dokl., 12 (1971), 1482-1486). Zbl0235.22008
  12. [12] Yu. I. LYUBICH, V.I. MATSAEV and G.M. FEL'DMAN, On representations with a separable spectrum, Funkcional. Anal. i Prilozen, 7 no. 2 (1973), 52-61 (= Functional Anal. Appl., 7 (1973), 129-136. Zbl0285.22004
  13. [13] B. NYMAN, On the one-dimensional translation group and semi-group in certain function spaces, Uppsala, (1950), 55 pp. (Thesis). Zbl0037.35401MR12,108g
  14. [14] C. RICKART, General theory of Banach algebras, Van Nostrand, (1960). Zbl0095.09702MR22 #5903
  15. [15] W. RUDIN, Boundary values of continuous analytic functions, Proc. Amer. Math. Soc., 7 (1956), 808-811. Zbl0073.29701MR18,472c
  16. [16] Z. SLODKOWSKI, On ideals consisting of joint topological divisors of zero, Studia Math., 48 (1973), 83-88. Zbl0271.46046MR50 #1003
  17. [17] N. VAROPOULOS, Groups of continuous functions in harmonic analysis, Acta Math., 125 (1970), 109-154. Zbl0214.38102MR43 #7868
  18. [18] C.R. WARNER, Weak-* dense subspaces of L∞ (R), Math. Ann., 197 (1972), 180-181. Zbl0221.46027MR47 #2336
  19. [19] W. ŻELAZKO, On a certain class of non-removable ideals in Banach algebras, Studia Math., 44 (1972), 87-92. Zbl0213.40603MR47 #2376

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.