A note on spaces of type H + C

David Stegenga

Annales de l'institut Fourier (1975)

  • Volume: 25, Issue: 2, page 213-217
  • ISSN: 0373-0956

Abstract

top
We show that a theorem of Rudin, concerning the sum of closed subspaces in a Banach space, has a converse. By means of an example we show that the result is in the nature of best possible.

How to cite

top

Stegenga, David. "A note on spaces of type $H^\infty +C$." Annales de l'institut Fourier 25.2 (1975): 213-217. <http://eudml.org/doc/74223>.

@article{Stegenga1975,
abstract = {We show that a theorem of Rudin, concerning the sum of closed subspaces in a Banach space, has a converse. By means of an example we show that the result is in the nature of best possible.},
author = {Stegenga, David},
journal = {Annales de l'institut Fourier},
language = {eng},
number = {2},
pages = {213-217},
publisher = {Association des Annales de l'Institut Fourier},
title = {A note on spaces of type $H^\infty +C$},
url = {http://eudml.org/doc/74223},
volume = {25},
year = {1975},
}

TY - JOUR
AU - Stegenga, David
TI - A note on spaces of type $H^\infty +C$
JO - Annales de l'institut Fourier
PY - 1975
PB - Association des Annales de l'Institut Fourier
VL - 25
IS - 2
SP - 213
EP - 217
AB - We show that a theorem of Rudin, concerning the sum of closed subspaces in a Banach space, has a converse. By means of an example we show that the result is in the nature of best possible.
LA - eng
UR - http://eudml.org/doc/74223
ER -

References

top
  1. [1] H. HELSON and D. SARASON, Past and future, Math. Scand., 21 (1967), 5-16. Zbl0241.60029
  2. [2] W. RUDIN, Spaces of Type H∞ + C, Annales de l'Institut Fourier, 25, 1 (1975), 99-125. Zbl0295.46080
  3. [3] W. RUDIN, Projections on invariant subspaces, Proc. AMS, 13 (1962), 429-432. Zbl0105.09504
  4. [4] D. SARASON, Generalized interpolation in H∞, Trans. Amer. Math. Soc., 127 (1967), 179-203. Zbl0145.39303
  5. [5] L. ZALCMAN, Bounded analytic functions on domains of infinite connectivity, Trans. Amer. Math. Soc., 144 (1969), 241-269. Zbl0188.45002

NotesEmbed ?

top

You must be logged in to post comments.