# A note on spaces of type ${H}^{\infty}+C$

Annales de l'institut Fourier (1975)

- Volume: 25, Issue: 2, page 213-217
- ISSN: 0373-0956

## Access Full Article

top## Abstract

top## How to cite

topStegenga, David. "A note on spaces of type $H^\infty +C$." Annales de l'institut Fourier 25.2 (1975): 213-217. <http://eudml.org/doc/74223>.

@article{Stegenga1975,

abstract = {We show that a theorem of Rudin, concerning the sum of closed subspaces in a Banach space, has a converse. By means of an example we show that the result is in the nature of best possible.},

author = {Stegenga, David},

journal = {Annales de l'institut Fourier},

language = {eng},

number = {2},

pages = {213-217},

publisher = {Association des Annales de l'Institut Fourier},

title = {A note on spaces of type $H^\infty +C$},

url = {http://eudml.org/doc/74223},

volume = {25},

year = {1975},

}

TY - JOUR

AU - Stegenga, David

TI - A note on spaces of type $H^\infty +C$

JO - Annales de l'institut Fourier

PY - 1975

PB - Association des Annales de l'Institut Fourier

VL - 25

IS - 2

SP - 213

EP - 217

AB - We show that a theorem of Rudin, concerning the sum of closed subspaces in a Banach space, has a converse. By means of an example we show that the result is in the nature of best possible.

LA - eng

UR - http://eudml.org/doc/74223

ER -

## References

top- [1] H. HELSON and D. SARASON, Past and future, Math. Scand., 21 (1967), 5-16. Zbl0241.60029
- [2] W. RUDIN, Spaces of Type H∞ + C, Annales de l'Institut Fourier, 25, 1 (1975), 99-125. Zbl0295.46080
- [3] W. RUDIN, Projections on invariant subspaces, Proc. AMS, 13 (1962), 429-432. Zbl0105.09504
- [4] D. SARASON, Generalized interpolation in H∞, Trans. Amer. Math. Soc., 127 (1967), 179-203. Zbl0145.39303
- [5] L. ZALCMAN, Bounded analytic functions on domains of infinite connectivity, Trans. Amer. Math. Soc., 144 (1969), 241-269. Zbl0188.45002

## NotesEmbed ?

topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.