On definitions of superharmonic functions

Seizô Itô

Annales de l'institut Fourier (1975)

  • Volume: 25, Issue: 3-4, page 309-316
  • ISSN: 0373-0956

Abstract

top
Let A be an elliptic differential operator of second order with variable coefficients. In this paper it is proved that any A -superharmonic function in the Riesz-Brelot sense is locally summable and satisfies the A -superharmonicity in the sense of Schwartz distribution.

How to cite

top

Itô, Seizô. "On definitions of superharmonic functions." Annales de l'institut Fourier 25.3-4 (1975): 309-316. <http://eudml.org/doc/74249>.

@article{Itô1975,
abstract = {Let $A$ be an elliptic differential operator of second order with variable coefficients. In this paper it is proved that any $A$-superharmonic function in the Riesz-Brelot sense is locally summable and satisfies the $A$-superharmonicity in the sense of Schwartz distribution.},
author = {Itô, Seizô},
journal = {Annales de l'institut Fourier},
language = {eng},
number = {3-4},
pages = {309-316},
publisher = {Association des Annales de l'Institut Fourier},
title = {On definitions of superharmonic functions},
url = {http://eudml.org/doc/74249},
volume = {25},
year = {1975},
}

TY - JOUR
AU - Itô, Seizô
TI - On definitions of superharmonic functions
JO - Annales de l'institut Fourier
PY - 1975
PB - Association des Annales de l'Institut Fourier
VL - 25
IS - 3-4
SP - 309
EP - 316
AB - Let $A$ be an elliptic differential operator of second order with variable coefficients. In this paper it is proved that any $A$-superharmonic function in the Riesz-Brelot sense is locally summable and satisfies the $A$-superharmonicity in the sense of Schwartz distribution.
LA - eng
UR - http://eudml.org/doc/74249
ER -

References

top
  1. [1] M. BRELOT, Éléments de la théorie classique du potentiel, Centre Doc. Univ. Paris, 3e éd. 1956. Zbl0098.07001
  2. [2] S. ITÔ, Fundamental solutions of parabolic differential equations and boundary value problems, Japan. J. Math., 27 (1957), 55-102. Zbl0092.31101MR20 #4702
  3. [3] F. RIESZ, Sur les fonctions subharmoniques et leur rapport à la théorie du potentiel, Acta Math., 48 (1926), 329-343 ; 54 (1930), 321-360. Zbl52.0497.05JFM52.0497.05
  4. [4] L. SCHWARTZ, Théorie des distributions, Hermann, Paris, 1966. 

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.