On Vitali-Hahn-Saks-Nikodym type theorems

Barbara T. Faires

Annales de l'institut Fourier (1976)

  • Volume: 26, Issue: 4, page 99-114
  • ISSN: 0373-0956

Abstract

top
A Boolean algebra 𝒜 has the interpolation property (property (I)) if given sequences ( a n ) , ( b m ) in 𝒜 with a n b m for all n , m , there exists an element b in 𝒜 such that a n b b n for all n . Let 𝒜 denote an algebra with the property (I). It is shown that if ( μ n : 𝒜 X ) ( X a Banach space) is a sequence of strongly additive measures such that lim n μ n ( a ) exists for each a 𝒜 , then μ ( a ) = lim n μ n ( a ) defines a strongly additive map from 𝒜 to X and the μ n ' s are uniformly strongly additive. The Vitali-Hahn-Saks (VHS) theorem for strongly additive X -valued measures defined on 𝒜 is derived from the Nikodym boundedness theorem. A proof of the VHS theorem for group-valued measures is given.

How to cite

top

Faires, Barbara T.. "On Vitali-Hahn-Saks-Nikodym type theorems." Annales de l'institut Fourier 26.4 (1976): 99-114. <http://eudml.org/doc/74304>.

@article{Faires1976,
abstract = {A Boolean algebra $\{\cal A\}$ has the interpolation property (property (I)) if given sequences $(a_n)$, $(b_m)$ in $\{\cal A\}$ with $a_n\le b_m$ for all $n,m$, there exists an element $b$ in $\{\cal A\}$ such that $a_n\le b\le b_n$ for all $n$. Let $\{\cal A\}$ denote an algebra with the property (I). It is shown that if $(\mu _n:\{\cal A\}\rightarrow X)$ ($X$ a Banach space) is a sequence of strongly additive measures such that $\lim _n\mu _n(a)$ exists for each $a\in \{\cal A\}$, then $\mu (a)=\lim _n\mu _n(a)$ defines a strongly additive map from $\{\cal A\}$ to $X$and the $\mu ^\{\prime \}_ns$ are uniformly strongly additive. The Vitali-Hahn-Saks (VHS) theorem for strongly additive $X$-valued measures defined on $\{\cal A\}$ is derived from the Nikodym boundedness theorem. A proof of the VHS theorem for group-valued measures is given.},
author = {Faires, Barbara T.},
journal = {Annales de l'institut Fourier},
language = {eng},
number = {4},
pages = {99-114},
publisher = {Association des Annales de l'Institut Fourier},
title = {On Vitali-Hahn-Saks-Nikodym type theorems},
url = {http://eudml.org/doc/74304},
volume = {26},
year = {1976},
}

TY - JOUR
AU - Faires, Barbara T.
TI - On Vitali-Hahn-Saks-Nikodym type theorems
JO - Annales de l'institut Fourier
PY - 1976
PB - Association des Annales de l'Institut Fourier
VL - 26
IS - 4
SP - 99
EP - 114
AB - A Boolean algebra ${\cal A}$ has the interpolation property (property (I)) if given sequences $(a_n)$, $(b_m)$ in ${\cal A}$ with $a_n\le b_m$ for all $n,m$, there exists an element $b$ in ${\cal A}$ such that $a_n\le b\le b_n$ for all $n$. Let ${\cal A}$ denote an algebra with the property (I). It is shown that if $(\mu _n:{\cal A}\rightarrow X)$ ($X$ a Banach space) is a sequence of strongly additive measures such that $\lim _n\mu _n(a)$ exists for each $a\in {\cal A}$, then $\mu (a)=\lim _n\mu _n(a)$ defines a strongly additive map from ${\cal A}$ to $X$and the $\mu ^{\prime }_ns$ are uniformly strongly additive. The Vitali-Hahn-Saks (VHS) theorem for strongly additive $X$-valued measures defined on ${\cal A}$ is derived from the Nikodym boundedness theorem. A proof of the VHS theorem for group-valued measures is given.
LA - eng
UR - http://eudml.org/doc/74304
ER -

References

top
  1. [1] T. ANDO, Convergent sequences of finitely additive measures, Pacific J. Math., 11 (1961), 395-404. Zbl0171.29903MR25 #1255
  2. [2] C. BESSAGA and A. PELCZYNSKI, On bases and unconditional convergence of series in Banach spaces, Studia Math., 17 (1958), 151-164. Zbl0084.09805MR22 #5872
  3. [3] J. K. BROOKS and R. S. JEWETT, On finitely additive vector measures, Proc. Nat. Acad. Sci., U.S.A., 67 (1970), 1294-1298. Zbl0216.09602MR42 #4697
  4. [4] R. B. DARST, The Vitali-Hahn-Saks and Nikodym theorems for additive set functions, Bull. Amer. Math. Soc., 76 (1970), 1297-1298. Zbl0202.33802MR41 #8625
  5. [5] R. B. DARST, The Vitali-Hahn-Saks and Nikodym theorems, Bull. Amer. Math. Soc., 79 (1973), 758-760. Zbl0264.28006MR47 #5216
  6. [6] J. DIESTEL, Applications of weak compactness and bases to vector measures and vectoriel integration, Revue Roum. Math., 18 (1973), 211-224. Zbl0267.46035MR47 #5590
  7. [7] J. DIESTEL, Grothendieck spaces and vector measures, Vector and Operator Valued Measures and Applications, Academic Press, New York, 1973, 97-108. Zbl0316.46009MR49 #3538
  8. [8] J. DIESTEL and B. FAIRES, On vector measures, Trans. Amer. Math. Soc., 198 (1974), 253-271. Zbl0297.46034MR50 #2912
  9. [9] J. DIESTEL, R. HUFF and B. FAIRES, Convergence and boundedness of measures on non-sigma complete algebras, preprint. 
  10. [10] J. DIESTEL and J. UHL, Vector measures, Notes prepared at Kent State University and the University of Illinois, 1973. 
  11. [11] L. DREWNOWSKI, Topological rings of sets, continuous set functions, integration II, Bull. Acad. Polon. Sci., Sér. Sci. Math., Astronom. et Phys., 20 (1972), 277-286. Zbl0249.28005
  12. [12] N. DUNFORD and J. SCHWARTZ, Linear Operators, Part I, Interscience, New York, 1958. Zbl0084.10402MR22 #8302
  13. [13] A. GROTHENDIECK, Criteria of compactness in function spaces, Amer. J. Math., 74 (1952), 168-186. Zbl0046.11702
  14. [14] H. HAHN, Über Folgen linearer Operationen, Monatsh. für Math. und Physik, 32 (1922), 3-88. JFM48.0473.01
  15. [15] O. M. NIKODYM, Sur les familles bornées de fonctions parfaitement additives d'ensemble abstrait, Monatsh. für Math. und Physik, 40 (1933), 418-426. Zbl0008.25002JFM59.0270.02
  16. [16] O. M. NIKODYM, Sur les suites convergentes de fonctions parfaitement additives d'ensemble abstrait, Monatsh, für Math. und Physik, 40 (1933), 427-432. Zbl0008.25003JFM59.0270.03
  17. [17] A. PELCZYNSKI, Banach spaces on which every unconditionally converging operator is weakly compact, Bull. Acad. Polon. Sci., Sér. Sci. Math., Astr. et Phys., 10 (1962), 641-648. Zbl0107.32504MR26 #6785
  18. [18] C. E. RICKART, Decomposition of additive set functions, Duke Math. J., 10 (1943), 653-665. Zbl0063.06492MR5,232c
  19. [19] H. P. ROSENTHAL, On relatively disjoint families of measures, with some applications to Banach space theory, Studia Math., 37 (1970), 13-36. Zbl0227.46027MR42 #5015
  20. [20] S. SAKS, Addition to the note on some functionals, Trans. Amer. Math. Soc., 35 (1933), 967-974. Zbl0008.15104MR1501701JFM59.0409.02
  21. [21] G. SEEVER, Measures on F-spaces, Trans. Amer. Math. Soc., 133 (1968), 267-280. Zbl0189.44902MR37 #1976
  22. [22] J. J. UHL Jr., Applications of a lemma of Rosenthal to vector measures and series in Banach spaces, Preprint. 
  23. [23] G. VITALI, Sull'integrazione per serie, Rend. del Circolo Mat. di Palermo, 23 (1907), 137-155. JFM38.0338.01
  24. [24] B. FAIRES, On Vitali-Hahn-Saks Type Theorems, Bull. Amer. Math. Soc., 80 (1974), 670-674. Zbl0287.46056MR51 #13681

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.