On Vitali-Hahn-Saks-Nikodym type theorems
Annales de l'institut Fourier (1976)
- Volume: 26, Issue: 4, page 99-114
- ISSN: 0373-0956
Access Full Article
topAbstract
topHow to cite
topFaires, Barbara T.. "On Vitali-Hahn-Saks-Nikodym type theorems." Annales de l'institut Fourier 26.4 (1976): 99-114. <http://eudml.org/doc/74304>.
@article{Faires1976,
abstract = {A Boolean algebra $\{\cal A\}$ has the interpolation property (property (I)) if given sequences $(a_n)$, $(b_m)$ in $\{\cal A\}$ with $a_n\le b_m$ for all $n,m$, there exists an element $b$ in $\{\cal A\}$ such that $a_n\le b\le b_n$ for all $n$. Let $\{\cal A\}$ denote an algebra with the property (I). It is shown that if $(\mu _n:\{\cal A\}\rightarrow X)$ ($X$ a Banach space) is a sequence of strongly additive measures such that $\lim _n\mu _n(a)$ exists for each $a\in \{\cal A\}$, then $\mu (a)=\lim _n\mu _n(a)$ defines a strongly additive map from $\{\cal A\}$ to $X$and the $\mu ^\{\prime \}_ns$ are uniformly strongly additive. The Vitali-Hahn-Saks (VHS) theorem for strongly additive $X$-valued measures defined on $\{\cal A\}$ is derived from the Nikodym boundedness theorem. A proof of the VHS theorem for group-valued measures is given.},
author = {Faires, Barbara T.},
journal = {Annales de l'institut Fourier},
language = {eng},
number = {4},
pages = {99-114},
publisher = {Association des Annales de l'Institut Fourier},
title = {On Vitali-Hahn-Saks-Nikodym type theorems},
url = {http://eudml.org/doc/74304},
volume = {26},
year = {1976},
}
TY - JOUR
AU - Faires, Barbara T.
TI - On Vitali-Hahn-Saks-Nikodym type theorems
JO - Annales de l'institut Fourier
PY - 1976
PB - Association des Annales de l'Institut Fourier
VL - 26
IS - 4
SP - 99
EP - 114
AB - A Boolean algebra ${\cal A}$ has the interpolation property (property (I)) if given sequences $(a_n)$, $(b_m)$ in ${\cal A}$ with $a_n\le b_m$ for all $n,m$, there exists an element $b$ in ${\cal A}$ such that $a_n\le b\le b_n$ for all $n$. Let ${\cal A}$ denote an algebra with the property (I). It is shown that if $(\mu _n:{\cal A}\rightarrow X)$ ($X$ a Banach space) is a sequence of strongly additive measures such that $\lim _n\mu _n(a)$ exists for each $a\in {\cal A}$, then $\mu (a)=\lim _n\mu _n(a)$ defines a strongly additive map from ${\cal A}$ to $X$and the $\mu ^{\prime }_ns$ are uniformly strongly additive. The Vitali-Hahn-Saks (VHS) theorem for strongly additive $X$-valued measures defined on ${\cal A}$ is derived from the Nikodym boundedness theorem. A proof of the VHS theorem for group-valued measures is given.
LA - eng
UR - http://eudml.org/doc/74304
ER -
References
top- [1] T. ANDO, Convergent sequences of finitely additive measures, Pacific J. Math., 11 (1961), 395-404. Zbl0171.29903MR25 #1255
- [2] C. BESSAGA and A. PELCZYNSKI, On bases and unconditional convergence of series in Banach spaces, Studia Math., 17 (1958), 151-164. Zbl0084.09805MR22 #5872
- [3] J. K. BROOKS and R. S. JEWETT, On finitely additive vector measures, Proc. Nat. Acad. Sci., U.S.A., 67 (1970), 1294-1298. Zbl0216.09602MR42 #4697
- [4] R. B. DARST, The Vitali-Hahn-Saks and Nikodym theorems for additive set functions, Bull. Amer. Math. Soc., 76 (1970), 1297-1298. Zbl0202.33802MR41 #8625
- [5] R. B. DARST, The Vitali-Hahn-Saks and Nikodym theorems, Bull. Amer. Math. Soc., 79 (1973), 758-760. Zbl0264.28006MR47 #5216
- [6] J. DIESTEL, Applications of weak compactness and bases to vector measures and vectoriel integration, Revue Roum. Math., 18 (1973), 211-224. Zbl0267.46035MR47 #5590
- [7] J. DIESTEL, Grothendieck spaces and vector measures, Vector and Operator Valued Measures and Applications, Academic Press, New York, 1973, 97-108. Zbl0316.46009MR49 #3538
- [8] J. DIESTEL and B. FAIRES, On vector measures, Trans. Amer. Math. Soc., 198 (1974), 253-271. Zbl0297.46034MR50 #2912
- [9] J. DIESTEL, R. HUFF and B. FAIRES, Convergence and boundedness of measures on non-sigma complete algebras, preprint.
- [10] J. DIESTEL and J. UHL, Vector measures, Notes prepared at Kent State University and the University of Illinois, 1973.
- [11] L. DREWNOWSKI, Topological rings of sets, continuous set functions, integration II, Bull. Acad. Polon. Sci., Sér. Sci. Math., Astronom. et Phys., 20 (1972), 277-286. Zbl0249.28005
- [12] N. DUNFORD and J. SCHWARTZ, Linear Operators, Part I, Interscience, New York, 1958. Zbl0084.10402MR22 #8302
- [13] A. GROTHENDIECK, Criteria of compactness in function spaces, Amer. J. Math., 74 (1952), 168-186. Zbl0046.11702
- [14] H. HAHN, Über Folgen linearer Operationen, Monatsh. für Math. und Physik, 32 (1922), 3-88. JFM48.0473.01
- [15] O. M. NIKODYM, Sur les familles bornées de fonctions parfaitement additives d'ensemble abstrait, Monatsh. für Math. und Physik, 40 (1933), 418-426. Zbl0008.25002JFM59.0270.02
- [16] O. M. NIKODYM, Sur les suites convergentes de fonctions parfaitement additives d'ensemble abstrait, Monatsh, für Math. und Physik, 40 (1933), 427-432. Zbl0008.25003JFM59.0270.03
- [17] A. PELCZYNSKI, Banach spaces on which every unconditionally converging operator is weakly compact, Bull. Acad. Polon. Sci., Sér. Sci. Math., Astr. et Phys., 10 (1962), 641-648. Zbl0107.32504MR26 #6785
- [18] C. E. RICKART, Decomposition of additive set functions, Duke Math. J., 10 (1943), 653-665. Zbl0063.06492MR5,232c
- [19] H. P. ROSENTHAL, On relatively disjoint families of measures, with some applications to Banach space theory, Studia Math., 37 (1970), 13-36. Zbl0227.46027MR42 #5015
- [20] S. SAKS, Addition to the note on some functionals, Trans. Amer. Math. Soc., 35 (1933), 967-974. Zbl0008.15104MR1501701JFM59.0409.02
- [21] G. SEEVER, Measures on F-spaces, Trans. Amer. Math. Soc., 133 (1968), 267-280. Zbl0189.44902MR37 #1976
- [22] J. J. UHL Jr., Applications of a lemma of Rosenthal to vector measures and series in Banach spaces, Preprint.
- [23] G. VITALI, Sull'integrazione per serie, Rend. del Circolo Mat. di Palermo, 23 (1907), 137-155. JFM38.0338.01
- [24] B. FAIRES, On Vitali-Hahn-Saks Type Theorems, Bull. Amer. Math. Soc., 80 (1974), 670-674. Zbl0287.46056MR51 #13681
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.