The generic dimension of the first derived system
Annales de l'institut Fourier (1978)
- Volume: 28, Issue: 3, page 113-121
- ISSN: 0373-0956
Access Full Article
topAbstract
topHow to cite
topBuemi, Robert P.. "The generic dimension of the first derived system." Annales de l'institut Fourier 28.3 (1978): 113-121. <http://eudml.org/doc/74365>.
@article{Buemi1978,
abstract = {Any $r$-dimensional subbundle of the cotangent bundle on an $n$-dimensional manifold $M$ partitions $M$ into subsets $M_0,\ldots , M_m$ ($m$ being the minimum of $r$ and $C(n-r,2)$, the combinations of $n-r$ things taken 2 at a time). $M_i$ is the set on which the first derived systems of the subbundle has codimension $i$.In this paper we prove the following:Theorem. Let $s\ge 2$ and let $Q$ be a generic $C^s$$r$-dimensional subbundle of the cotangent bundle of an $n$-dimensional manifold $M$. The codimension of $M_i$ is given by $(C(n-r,2)-i)(r-i)$.},
author = {Buemi, Robert P.},
journal = {Annales de l'institut Fourier},
language = {eng},
number = {3},
pages = {113-121},
publisher = {Association des Annales de l'Institut Fourier},
title = {The generic dimension of the first derived system},
url = {http://eudml.org/doc/74365},
volume = {28},
year = {1978},
}
TY - JOUR
AU - Buemi, Robert P.
TI - The generic dimension of the first derived system
JO - Annales de l'institut Fourier
PY - 1978
PB - Association des Annales de l'Institut Fourier
VL - 28
IS - 3
SP - 113
EP - 121
AB - Any $r$-dimensional subbundle of the cotangent bundle on an $n$-dimensional manifold $M$ partitions $M$ into subsets $M_0,\ldots , M_m$ ($m$ being the minimum of $r$ and $C(n-r,2)$, the combinations of $n-r$ things taken 2 at a time). $M_i$ is the set on which the first derived systems of the subbundle has codimension $i$.In this paper we prove the following:Theorem. Let $s\ge 2$ and let $Q$ be a generic $C^s$$r$-dimensional subbundle of the cotangent bundle of an $n$-dimensional manifold $M$. The codimension of $M_i$ is given by $(C(n-r,2)-i)(r-i)$.
LA - eng
UR - http://eudml.org/doc/74365
ER -
References
top- [1] R. BUEMI, An obstruction to certain non-integrable 2-plane fields, Topology, 16 (1977), 173-176. Zbl0348.58003MR55 #11267
- [2] E. CARTAN, Oeuvres Complètes, Paris, Gauthier-Villars, 1953.
- [3] M. HIRSCH, Differential Topology, Springer-Verlag, 1976. Zbl0356.57001MR56 #6669
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.