On the Cech bicomplex associated with foliated structures

Haruo Kitahara; Shinsuke Yorozu

Annales de l'institut Fourier (1978)

  • Volume: 28, Issue: 3, page 217-224
  • ISSN: 0373-0956

Abstract

top
For a codimension q foliation on a manifold, η × ( d η ) q defines the Godbillon-Vey class. We show that η itself defines a certain cohomology class, via the Cech bicomplex.

How to cite

top

Kitahara, Haruo, and Yorozu, Shinsuke. "On the Cech bicomplex associated with foliated structures." Annales de l'institut Fourier 28.3 (1978): 217-224. <http://eudml.org/doc/74373>.

@article{Kitahara1978,
abstract = {For a codimension $q$ foliation on a manifold, $\eta \times (d\eta )^q$ defines the Godbillon-Vey class. We show that $\eta $ itself defines a certain cohomology class, via the Cech bicomplex.},
author = {Kitahara, Haruo, Yorozu, Shinsuke},
journal = {Annales de l'institut Fourier},
language = {eng},
number = {3},
pages = {217-224},
publisher = {Association des Annales de l'Institut Fourier},
title = {On the Cech bicomplex associated with foliated structures},
url = {http://eudml.org/doc/74373},
volume = {28},
year = {1978},
}

TY - JOUR
AU - Kitahara, Haruo
AU - Yorozu, Shinsuke
TI - On the Cech bicomplex associated with foliated structures
JO - Annales de l'institut Fourier
PY - 1978
PB - Association des Annales de l'Institut Fourier
VL - 28
IS - 3
SP - 217
EP - 224
AB - For a codimension $q$ foliation on a manifold, $\eta \times (d\eta )^q$ defines the Godbillon-Vey class. We show that $\eta $ itself defines a certain cohomology class, via the Cech bicomplex.
LA - eng
UR - http://eudml.org/doc/74373
ER -

References

top
  1. [1] R. BOTT, Lectures on characteristic classes and foliations, Lecture Notes in Math., Springer, 279 (1972), 1-94. Zbl0241.57010MR50 #14777
  2. [2] C. GODBILLON and J. VEY, Un invariant des feuilletages de codimension 1, C.R. Acad. Sci., Paris, 273 (1971), A92-95. Zbl0215.24604MR44 #1046
  3. [3] F.W. KAMBER and P. TONDEUR, Foliated bundles and characteristic classes, Lecture Notes in Math., Springer, 493 (1975). Zbl0308.57011MR53 #6587
  4. [4] H. KITAHARA and S. YOROZU, Sur l'homomorphisme de Chern-Weil local et ses applications au feuilletage, C.R. Acad. Sci., Paris, 281 (1975), A703-706. Zbl0318.57028MR53 #11628
  5. [5] G. REEB, Sur certaines propriétés topologiques des variétés feuilletées, Hermann (1952). Zbl0049.12602MR14,1113a
  6. [6] Y. SHIKATA, On the spectral sequences associated to foliated structures, Nagoya Math. J., 38 (1970), 53-61. Zbl0193.52602
  7. [7] Y. SHIKATA, On the cohomology of bigraded forms associated with foliated structures, Bull. Soc. Math. Grèce, 15 (1974), 68-76. Zbl0321.57016MR58 #31107
  8. [8] A. SO, J.C. THOMAS and C. WATKISS, Sur la multiplicativité de l'homomorphisme de Chern-Weil local, C.R. Acad. Sci., Paris, 280 (1975), A369-371. Zbl0301.57011MR52 #9246

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.