Properties of Orlicz-Pettis or Nikodym type and barrelledness conditions

Philippe Turpin

Annales de l'institut Fourier (1978)

  • Volume: 28, Issue: 3, page 67-85
  • ISSN: 0373-0956

Abstract

top
An Orlicz-Pettis type property for vector measures and also the “Uniform Boundedness Principle” are shown to fail without local convexity assumption. The author asks under which generalized convexity hypotheses these properties remain true. This problem is expressed in terms of barrelledness type conditions.

How to cite

top

Turpin, Philippe. "Properties of Orlicz-Pettis or Nikodym type and barrelledness conditions." Annales de l'institut Fourier 28.3 (1978): 67-85. <http://eudml.org/doc/74376>.

@article{Turpin1978,
abstract = {An Orlicz-Pettis type property for vector measures and also the “Uniform Boundedness Principle” are shown to fail without local convexity assumption. The author asks under which generalized convexity hypotheses these properties remain true. This problem is expressed in terms of barrelledness type conditions.},
author = {Turpin, Philippe},
journal = {Annales de l'institut Fourier},
language = {eng},
number = {3},
pages = {67-85},
publisher = {Association des Annales de l'Institut Fourier},
title = {Properties of Orlicz-Pettis or Nikodym type and barrelledness conditions},
url = {http://eudml.org/doc/74376},
volume = {28},
year = {1978},
}

TY - JOUR
AU - Turpin, Philippe
TI - Properties of Orlicz-Pettis or Nikodym type and barrelledness conditions
JO - Annales de l'institut Fourier
PY - 1978
PB - Association des Annales de l'Institut Fourier
VL - 28
IS - 3
SP - 67
EP - 85
AB - An Orlicz-Pettis type property for vector measures and also the “Uniform Boundedness Principle” are shown to fail without local convexity assumption. The author asks under which generalized convexity hypotheses these properties remain true. This problem is expressed in terms of barrelledness type conditions.
LA - eng
UR - http://eudml.org/doc/74376
ER -

References

top
  1. [1] G. BENNETT, N.J. KALTON, Inclusion theorems for K-spaces, Canad. J. Math., 25 (1973), 511-524. Zbl0272.46009MR48 #836
  2. [2] J.H.E. COHN, On the value of determinants, Proc. Amer. Math. Soc., 14 (1963), 581-588. Zbl0129.26702MR27 #1464
  3. [3] L. DREWNOWSKI, Topological rings of sets, continuous set functions, integration, I, II and III, Bull. Acad. Polon. Sci., 20 (1972), 269-276, 277-286, 439-445. Zbl0249.28006
  4. [4] L. DREWNOWSKI, Equivalence of Brooks-Jewett, Vitali-Hahn-Saks and Nikodym theorems, Bull. Acad. Polon. Sci., 20 (1972), 725-731. Zbl0243.28011MR47 #431
  5. [5] L. DREWNOWSKI, Uniform boundedness principle for finitely additive vector measures, Bull. Acad. Polon. Sci., 21 (1973), 115-118. Zbl0248.28007MR47 #5217
  6. [6] L. DREWNOWSKI, On the Orlicz-Pettis type theorems of Kalton, Bull. Acad. Polon. Sci., 21 (1973), 515-518. Zbl0263.22003MR48 #4260
  7. [7] L. DREWNOWSKI, I. LABUDA, Sur quelques théorèmes du type d'Orlicz-Pettis II, Bull. Acad. Polon. Sci., 21 (1973), 119-126. Zbl0256.28010MR47 #5220
  8. [8] W. FISCHER, U. SCHOLER, The range of vector measures into Orlicz spaces, Studia Math., 59 (1976), 53-61. Zbl0417.46050MR55 #611
  9. [9] W. FISCHER, U. SCHOLER, Sur la bornitude d'une mesure vectorielle, C.R. Acad. Sci,., Paris, 282 A (1976), 519-522. Zbl0324.46005MR53 #3252
  10. [10] A. GROTHENDIECK, Espaces vectoriels topologiques, Instituto de Matematica Pura e Aplicada, Universidade de Sao Paulo, 3d ed., Sao Paulo, 1964. Zbl0316.46001
  11. [11] T. HUSAIN, The open mapping and closed graph theorems in topological vector spaces, Clarendon Press, Oxford, 1965. Zbl0124.06301MR31 #2589
  12. [12] S.O. IYAHEN, On certain classes of linear topological spaces, Proc. London Math. Soc., 18 (1968), 285-307. Zbl0165.14203MR37 #1948
  13. [13] N.J. KALTON, Topologies on Riesz groups and applications to measure theory, Proc. London Math. Soc., (3) 28 (1974), 253-273. Zbl0276.28014MR51 #10577
  14. [14] I. LABUDA, Sur quelques généralisations des théorèmes de Nikodym et de Vitali-Hahn-Saks, Bull. Acad. Polon. Sci., 20 (1972), 447-456. Zbl0242.28003MR49 #5290
  15. [15] I. LABUDA, Sur quelques théorèmes du type d'Orlicz-Pettis I, Bull. Acad. Polon. Sci., 21 (1973), 127-132. Zbl0256.28009MR47 #5219
  16. [16] I. LABUDA, Ensembles convexes dans les espaces d'Orlicz, C.R. Acad. Sci., Paris, 281 (1975), 443-445. Zbl0309.46027MR54 #5819
  17. [17] W. ROBERTSON, Completions of topological vector spaces, Proc. London Math. Soc., (3) 8 (1958), 242-257. Zbl0081.32604MR20 #4759
  18. [18] S. ROLEWICZ, Metric linear spaces, Monografie Matematyczne 56, PWN, Warsaw 1972. Zbl0226.46001MR55 #10993
  19. [19] S. ROLEWICZC. RYLL-NARDZEWSKI, On unconditional convergence in linear metric spaces, Coll. Math., 17 (1967), 327-331. Zbl0166.10401MR36 #3017
  20. [20] G.L. SEEVER, Measures on F-spaces, Trans. Amer. Math. Soc., 133 (1968), 267-280. Zbl0189.44902MR37 #1976
  21. [21] E. THOMAS, The Lebesgue-Nikodym theorem for vector valued Radon measures, Mem. Amer. Math. Soc., 139 (1974). Zbl0282.28004
  22. [22] Ph. TURPIN, Convexités dans les espaces vectoriels topologiques généraux, Dissertationes Math., 131, PWN, Warsaw, 1975. Zbl0331.46001
  23. [23] Ph. TURPIN, Conditions de bornitude et espaces de fonctions mesurables, Studia Math., 56 (1975), 69-91. Zbl0335.46021
  24. [24] Ph. TURPIN, Une mesure vectorielle non bornée, C.R. Acad. Sci., Paris, 280 A (1975), 509-511. Zbl0295.46070MR52 #6417
  25. [25] Ph. TURPIN, Intégration par rapport à une mesure à valeurs dans un espace vectoriel topologique non supposé localement convexe, Colloque sur l'Intégration vectorielle et multivoque, Caen 22 et 23 mai 1975. Zbl0364.46032
  26. [26] L. WAELBROECK, Topological vector spaces and algebras, Lecture Notes in Mathematics, 230, Springer, Berlin, 1971. Zbl0225.46001MR57 #7098

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.