Sur la mesure spectrale des suites multiplicatives

Jean Coquet

Annales de l'institut Fourier (1979)

  • Volume: 29, Issue: 3, page 163-170
  • ISSN: 0373-0956

Abstract

top
It is proved that, if a multiplicative sequence, the modulus of which is 1 , has non-empty Fourier-Bohr spectrum, its spectral measure is pure point. The proof, based on a result of J-.P. Bertrandias, avoids the calculation of the covariance.

How to cite

top

Coquet, Jean. "Sur la mesure spectrale des suites multiplicatives." Annales de l'institut Fourier 29.3 (1979): 163-170. <http://eudml.org/doc/74416>.

@article{Coquet1979,
abstract = {Dans cet article, nous démontrons que la mesure spectrale d’une suite multiplicative de module $\le 1$ dont le spectre de Fourier-Bohr est non vide, est atomique. La preuve, basée sur un résultat de J.-P. Bertrandias, évite le calcul de la corrélation.},
author = {Coquet, Jean},
journal = {Annales de l'institut Fourier},
keywords = {arithmetic function; spectral measure; multiplicative sequence},
language = {fre},
number = {3},
pages = {163-170},
publisher = {Association des Annales de l'Institut Fourier},
title = {Sur la mesure spectrale des suites multiplicatives},
url = {http://eudml.org/doc/74416},
volume = {29},
year = {1979},
}

TY - JOUR
AU - Coquet, Jean
TI - Sur la mesure spectrale des suites multiplicatives
JO - Annales de l'institut Fourier
PY - 1979
PB - Association des Annales de l'Institut Fourier
VL - 29
IS - 3
SP - 163
EP - 170
AB - Dans cet article, nous démontrons que la mesure spectrale d’une suite multiplicative de module $\le 1$ dont le spectre de Fourier-Bohr est non vide, est atomique. La preuve, basée sur un résultat de J.-P. Bertrandias, évite le calcul de la corrélation.
LA - fre
KW - arithmetic function; spectral measure; multiplicative sequence
UR - http://eudml.org/doc/74416
ER -

References

top
  1. [1] J.P. BERTRANDIAS, Espaces de fonctions bornées et continues en moyenne asymptotique d'ordre p, Bull. Soc. Math. France, mémoire 5 (1966), 1-106. Zbl0148.11701MR33 #4598
  2. [2] J. COQUET, T. KAMAE, M. MENDES-FRANCE, Sur la mesure spectrale de certaines suites arithmétiques, Bull. Soc. Math. France, 105 (1977), 369-384. Zbl0383.10035MR57 #12439
  3. [3] J. COQUET, Sur les fonctions q-multiplicatives pseudo-aléatoires, C.R.A.S., Paris, 282 (1976), 175-178. Zbl0316.10032MR53 #5518
  4. [4] H. DABOUSSI, H. DELANGE, Quelques propriétés des fonctions multiplicatives de module ≤1, C.R.A.S., Paris, 278 (1974), 657-660. Zbl0292.10034MR48 #11028
  5. [5] H. DABOUSSI, M. MENDES-FRANCE, Spectrum, almost-periodicity and equidistribution modulo 1, Studia Scientiarum Math. Hung., 9 (1974), 173-180. Zbl0321.10043
  6. [6] G. HALASZ, Uber die Mittelwerte multiplikativer zahlentheoretischer Funktionen, Acta Math. Acad. Sc. Hungaricae, 19 (1968), 365-403. Zbl0165.05804MR37 #6254
  7. [7] J. KUBILIUS, Probabilistic methods in the theory of numbers, A.M.S., Mathematical monographs, 11. Zbl0133.30203MR28 #3956

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.