Zeros of random functions in Bergman spaces

Joel H. Shapiro

Annales de l'institut Fourier (1979)

  • Volume: 29, Issue: 4, page 159-171
  • ISSN: 0373-0956

Abstract

top
Suppose μ is a finite positive rotation invariant Borel measure on the open unit disc Δ , and that the unit circle lies in the closed support of μ . For 0 < p < the Bergman space A μ p is the collection of functions in L p ( μ ) holomorphic on Δ . We show that whenever a Gaussian power series f ( z ) = Σ ζ n a n z n almost surely lies in A μ p but not in q > p A μ p , then almost surely: a) the zero set Z ( f ) of f is not contained in any A μ q zero set ( q > p , and b) Z ( f + 1 ) Z ( f - 1 ) is not contained in any A μ q zero set.

How to cite

top

Shapiro, Joel H.. "Zeros of random functions in Bergman spaces." Annales de l'institut Fourier 29.4 (1979): 159-171. <http://eudml.org/doc/74429>.

@article{Shapiro1979,
abstract = {Suppose $\mu $ is a finite positive rotation invariant Borel measure on the open unit disc $\Delta $, and that the unit circle lies in the closed support of $\mu $. For $0&lt; p&lt; \infty $ the Bergman space$A^p_\mu $ is the collection of functions in $L^p(\mu )$ holomorphic on $\Delta $. We show that whenever a Gaussian power series $f(z) = \Sigma \zeta _na_nz^n$ almost surely lies in $A^p_\mu $ but not in $\bigcup _\{q&gt;p\} A^p_\mu $, then almost surely: a) the zero set $Z(f)$ of $f$ is not contained in any $A^q_\mu $ zero set ($q&gt;p$, and b) $Z(f+1)\cup Z(f-1)$ is not contained in any $A^q_\mu $ zero set.},
author = {Shapiro, Joel H.},
journal = {Annales de l'institut Fourier},
keywords = {Random Functions; Bergman Spaces; Rotation Invariant Borel Measure; Gaussian Power Series},
language = {eng},
number = {4},
pages = {159-171},
publisher = {Association des Annales de l'Institut Fourier},
title = {Zeros of random functions in Bergman spaces},
url = {http://eudml.org/doc/74429},
volume = {29},
year = {1979},
}

TY - JOUR
AU - Shapiro, Joel H.
TI - Zeros of random functions in Bergman spaces
JO - Annales de l'institut Fourier
PY - 1979
PB - Association des Annales de l'Institut Fourier
VL - 29
IS - 4
SP - 159
EP - 171
AB - Suppose $\mu $ is a finite positive rotation invariant Borel measure on the open unit disc $\Delta $, and that the unit circle lies in the closed support of $\mu $. For $0&lt; p&lt; \infty $ the Bergman space$A^p_\mu $ is the collection of functions in $L^p(\mu )$ holomorphic on $\Delta $. We show that whenever a Gaussian power series $f(z) = \Sigma \zeta _na_nz^n$ almost surely lies in $A^p_\mu $ but not in $\bigcup _{q&gt;p} A^p_\mu $, then almost surely: a) the zero set $Z(f)$ of $f$ is not contained in any $A^q_\mu $ zero set ($q&gt;p$, and b) $Z(f+1)\cup Z(f-1)$ is not contained in any $A^q_\mu $ zero set.
LA - eng
KW - Random Functions; Bergman Spaces; Rotation Invariant Borel Measure; Gaussian Power Series
UR - http://eudml.org/doc/74429
ER -

References

top
  1. [1] X. FERNIQUE, Intégrabilité des vecteurs gaussiens, C.R. Acad. Sci., Paris, 270 (1970), 1698-1699. Zbl0206.19002MR42 #1170
  2. [2] Ch. HOROWITZ, Zeros of functions in Bergman spaces, Duke Math. J., 41 (1974), 693-710. Zbl0293.30035MR50 #10215
  3. [3] J.P. KAHANE, Some Random Series of Functions, D.C. Heath and Co., Lexington, MA, 1968. Zbl0192.53801MR40 #8095
  4. [4] W. RUDIN, Zeros of holomorphic functions in balls, Indag. Math., 38 (1976), 57-65. Zbl0319.32003MR52 #14347
  5. [5] W. RUDIN, Principles of Real Analysis, 3rd ed., McGraw-Hill, New York, 1976. Zbl0346.26002
  6. [6] W. RUDIN, Real and Complex Analysis, McGraw-Hill, New York, 1974. Zbl0278.26001MR49 #8783
  7. [7] J. H. SHAPIRO, Zeros of functions in weighted Bergman spaces, Michigan Math. J., 24 (1977), 243-256. Zbl0376.30009MR57 #3404

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.