A theorem on weak type estimates for Riesz transforms and martingale transforms
Annales de l'institut Fourier (1981)
- Volume: 31, Issue: 1, page 257-264
- ISSN: 0373-0956
Access Full Article
topAbstract
topHow to cite
topVaropoulos, Nicolas Th.. "A theorem on weak type estimates for Riesz transforms and martingale transforms." Annales de l'institut Fourier 31.1 (1981): 257-264. <http://eudml.org/doc/74486>.
@article{Varopoulos1981,
abstract = {The Riesz transforms of a positive singular measure $\nu \in M(\{\bf R\}^n)$ satisfy the weak type inequality\begin\{\}m\Big [ \sum ^n\_\{j=1\} |R\_j\nu |> \lambda \Big ] \ge \{C\Vert \nu \Vert \over \lambda \},~ \lambda >0\end\{\}where $m$ denotes Lebesgue measure and $C$ is a positive constant only depending on $m$.},
author = {Varopoulos, Nicolas Th.},
journal = {Annales de l'institut Fourier},
keywords = {Riesz transforms; martingale transforms},
language = {eng},
number = {1},
pages = {257-264},
publisher = {Association des Annales de l'Institut Fourier},
title = {A theorem on weak type estimates for Riesz transforms and martingale transforms},
url = {http://eudml.org/doc/74486},
volume = {31},
year = {1981},
}
TY - JOUR
AU - Varopoulos, Nicolas Th.
TI - A theorem on weak type estimates for Riesz transforms and martingale transforms
JO - Annales de l'institut Fourier
PY - 1981
PB - Association des Annales de l'Institut Fourier
VL - 31
IS - 1
SP - 257
EP - 264
AB - The Riesz transforms of a positive singular measure $\nu \in M({\bf R}^n)$ satisfy the weak type inequality\begin{}m\Big [ \sum ^n_{j=1} |R_j\nu |> \lambda \Big ] \ge {C\Vert \nu \Vert \over \lambda },~ \lambda >0\end{}where $m$ denotes Lebesgue measure and $C$ is a positive constant only depending on $m$.
LA - eng
KW - Riesz transforms; martingale transforms
UR - http://eudml.org/doc/74486
ER -
References
top- [1] E.M. STEIN, Singular integrals and differentiability properties of functions, Princeton University press (1970). Zbl0207.13501MR44 #7280
- [2] CERETELI, Mat. Zametki, t. 22 No. 5 (1977).
- [3] R.F. GUNDY, On a Theorem of F. and M. Riesz and an Identity of A. Wald. (preprint). Zbl0466.31006
- [4] L. LOOMIS, A note on the Hilbert transform, B.A.M.S., 52 (1946), 1082-1086. Zbl0063.03630MR8,377d
- [5] K. MURALI RAO, Quasi-Martingales, Math. Scand., 24 (1969), 79-92. Zbl0193.45502MR43 #1265
- [6] S. JANSON, Characterizations of H1 by singular integral transforms on martingales and Rn, Math. Scand., 41 (1977), 140-152. Zbl0369.42005MR57 #3729
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.