A theorem on weak type estimates for Riesz transforms and martingale transforms

Nicolas Th. Varopoulos

Annales de l'institut Fourier (1981)

  • Volume: 31, Issue: 1, page 257-264
  • ISSN: 0373-0956

Abstract

top
The Riesz transforms of a positive singular measure ν M ( R n ) satisfy the weak type inequality m j = 1 n | R j ν | > λ C ν λ , λ > 0 where m denotes Lebesgue measure and C is a positive constant only depending on m .

How to cite

top

Varopoulos, Nicolas Th.. "A theorem on weak type estimates for Riesz transforms and martingale transforms." Annales de l'institut Fourier 31.1 (1981): 257-264. <http://eudml.org/doc/74486>.

@article{Varopoulos1981,
abstract = {The Riesz transforms of a positive singular measure $\nu \in M(\{\bf R\}^n)$ satisfy the weak type inequality\begin\{\}m\Big [ \sum ^n\_\{j=1\} |R\_j\nu |&gt; \lambda \Big ] \ge \{C\Vert \nu \Vert \over \lambda \},~ \lambda &gt;0\end\{\}where $m$ denotes Lebesgue measure and $C$ is a positive constant only depending on $m$.},
author = {Varopoulos, Nicolas Th.},
journal = {Annales de l'institut Fourier},
keywords = {Riesz transforms; martingale transforms},
language = {eng},
number = {1},
pages = {257-264},
publisher = {Association des Annales de l'Institut Fourier},
title = {A theorem on weak type estimates for Riesz transforms and martingale transforms},
url = {http://eudml.org/doc/74486},
volume = {31},
year = {1981},
}

TY - JOUR
AU - Varopoulos, Nicolas Th.
TI - A theorem on weak type estimates for Riesz transforms and martingale transforms
JO - Annales de l'institut Fourier
PY - 1981
PB - Association des Annales de l'Institut Fourier
VL - 31
IS - 1
SP - 257
EP - 264
AB - The Riesz transforms of a positive singular measure $\nu \in M({\bf R}^n)$ satisfy the weak type inequality\begin{}m\Big [ \sum ^n_{j=1} |R_j\nu |&gt; \lambda \Big ] \ge {C\Vert \nu \Vert \over \lambda },~ \lambda &gt;0\end{}where $m$ denotes Lebesgue measure and $C$ is a positive constant only depending on $m$.
LA - eng
KW - Riesz transforms; martingale transforms
UR - http://eudml.org/doc/74486
ER -

References

top
  1. [1] E.M. STEIN, Singular integrals and differentiability properties of functions, Princeton University press (1970). Zbl0207.13501MR44 #7280
  2. [2] CERETELI, Mat. Zametki, t. 22 No. 5 (1977). 
  3. [3] R.F. GUNDY, On a Theorem of F. and M. Riesz and an Identity of A. Wald. (preprint). Zbl0466.31006
  4. [4] L. LOOMIS, A note on the Hilbert transform, B.A.M.S., 52 (1946), 1082-1086. Zbl0063.03630MR8,377d
  5. [5] K. MURALI RAO, Quasi-Martingales, Math. Scand., 24 (1969), 79-92. Zbl0193.45502MR43 #1265
  6. [6] S. JANSON, Characterizations of H1 by singular integral transforms on martingales and Rn, Math. Scand., 41 (1977), 140-152. Zbl0369.42005MR57 #3729

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.