Fully nonlinear second order elliptic equations with large zeroth order coefficient
L. C. Evans; Pierre-Louis Lions
Annales de l'institut Fourier (1981)
- Volume: 31, Issue: 2, page 175-191
 - ISSN: 0373-0956
 
Access Full Article
topAbstract
topHow to cite
topEvans, L. C., and Lions, Pierre-Louis. "Fully nonlinear second order elliptic equations with large zeroth order coefficient." Annales de l'institut Fourier 31.2 (1981): 175-191. <http://eudml.org/doc/74495>.
@article{Evans1981,
	abstract = {We prove the existence of classical solutions to certain fully non-linear second order elliptic equations with large zeroth order coefficient. The principal tool is an a priori estimate asserting that the $C^\{2,\alpha \}$-norm of the solution cannot lie in a certain interval of the positive real axis.},
	author = {Evans, L. C., Lions, Pierre-Louis},
	journal = {Annales de l'institut Fourier},
	keywords = {nonlinear second order elliptic equations; existence of classical solutions; a priori estimate; continuation methods},
	language = {eng},
	number = {2},
	pages = {175-191},
	publisher = {Association des Annales de l'Institut Fourier},
	title = {Fully nonlinear second order elliptic equations with large zeroth order coefficient},
	url = {http://eudml.org/doc/74495},
	volume = {31},
	year = {1981},
}
TY  - JOUR
AU  - Evans, L. C.
AU  - Lions, Pierre-Louis
TI  - Fully nonlinear second order elliptic equations with large zeroth order coefficient
JO  - Annales de l'institut Fourier
PY  - 1981
PB  - Association des Annales de l'Institut Fourier
VL  - 31
IS  - 2
SP  - 175
EP  - 191
AB  - We prove the existence of classical solutions to certain fully non-linear second order elliptic equations with large zeroth order coefficient. The principal tool is an a priori estimate asserting that the $C^{2,\alpha }$-norm of the solution cannot lie in a certain interval of the positive real axis.
LA  - eng
KW  - nonlinear second order elliptic equations; existence of classical solutions; a priori estimate; continuation methods
UR  - http://eudml.org/doc/74495
ER  - 
References
top- [1] L. C. EVANS, On solving certain nonlinear partial differential equations by accretive operator methods, to appear in Isr. J. Math., (1981). Zbl0454.35038
 - [2] L. C. EVANS and A. FRIEDMAN, Stochastic optimal switching and the Dirichlet problem for the Bellman equation, Trans. Am. Math. Soc., 253 (1979), 365-389. Zbl0425.35046MR80f:93091
 - [3] A. FRIEDMAN, Partial Differential Equations, Holt, Rinehart and Winston, New York, 1969. Zbl0224.35002MR56 #3433
 - [4] O. A. LADYŽEWSKAJA and N. N. URAL'CEVA, Linear and Quasilinear Elliptic Equations, Academic Press, New York, 1968. Zbl0164.13002
 - [5] P. L. LIONS, Résolution des problèmes de Bellman-Dirichlet, to appear in Acta Math., (1981). Zbl0467.49016MR83c:49038
 - [6] P. L. LIONS, Résolution de problèmes elliptiques quasilinéaires, Arch. Rat. Mech. Anal., 74 (1980), 335-354. Zbl0449.35036MR82a:35034
 - [7] I. V. SKRYPNIK, On the topological character of general nonlinear operators, Doklady, 239 (1978), 538-541 (Russian). Zbl0393.35031MR58 #6678
 
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.