The class of convolution operators on the Marcinkiewicz spaces
Annales de l'institut Fourier (1981)
- Volume: 31, Issue: 3, page 225-243
- ISSN: 0373-0956
Access Full Article
topAbstract
topHow to cite
topLau, Ka-Sing. "The class of convolution operators on the Marcinkiewicz spaces." Annales de l'institut Fourier 31.3 (1981): 225-243. <http://eudml.org/doc/74505>.
@article{Lau1981,
abstract = {Let $\{\cal T\}_X$ denote the operator-norm closure of the class of convolution operators $\Phi _\mu : X\rightarrow X$ where $X$ is a suitable function space on $R$. Let $\{\cal M\}^p_r$ be the closed subspace of regular functions in the Marinkiewicz space $\{\cal M\}^p$, $1\le p< \infty $. We show that the space $\{\cal T\}_\{\{\cal M\}^p_r\}$ is isometrically isomorphic to $\{\cal T\}_\{L^p\}$ and that strong operator sequential convergence and norm convergence in $\{\cal T\}_\{\{\cal M\}^p_r\}$ coincide. We also obtain some results concerning convolution operators under the Wiener transformation. These are to improve a Tauberian theorem of Wiener on $\{\cal M\}^2$.},
author = {Lau, Ka-Sing},
journal = {Annales de l'institut Fourier},
keywords = {class of convolution operators; Marcinkiewicz space; Wiener transformation; Tauberian theorem},
language = {eng},
number = {3},
pages = {225-243},
publisher = {Association des Annales de l'Institut Fourier},
title = {The class of convolution operators on the Marcinkiewicz spaces},
url = {http://eudml.org/doc/74505},
volume = {31},
year = {1981},
}
TY - JOUR
AU - Lau, Ka-Sing
TI - The class of convolution operators on the Marcinkiewicz spaces
JO - Annales de l'institut Fourier
PY - 1981
PB - Association des Annales de l'Institut Fourier
VL - 31
IS - 3
SP - 225
EP - 243
AB - Let ${\cal T}_X$ denote the operator-norm closure of the class of convolution operators $\Phi _\mu : X\rightarrow X$ where $X$ is a suitable function space on $R$. Let ${\cal M}^p_r$ be the closed subspace of regular functions in the Marinkiewicz space ${\cal M}^p$, $1\le p< \infty $. We show that the space ${\cal T}_{{\cal M}^p_r}$ is isometrically isomorphic to ${\cal T}_{L^p}$ and that strong operator sequential convergence and norm convergence in ${\cal T}_{{\cal M}^p_r}$ coincide. We also obtain some results concerning convolution operators under the Wiener transformation. These are to improve a Tauberian theorem of Wiener on ${\cal M}^2$.
LA - eng
KW - class of convolution operators; Marcinkiewicz space; Wiener transformation; Tauberian theorem
UR - http://eudml.org/doc/74505
ER -
References
top- [1] K. ANZAI, S. KOIZUMI and K. MATSUOKA, On the Wiener formula of functions of two variables, Tokyo J. Math., (to appear). Zbl0471.42013
- [2] J.P. BERTRANDIAS, Espaces de fonctions bornées et continues en moyenne asymptotique d'ordre p, Bull. Soc. Math. France, (1966), Mémoire 5. Zbl0148.11701MR33 #4598
- [3] J.P. BERTRANDIAS, Opérateurs subordinatifs sur des espaces de fonctions bornées en moyenne quadratique, J. Math. Pures et Appl., 52 (1973), 27-63. Zbl0266.46020MR53 #3766
- [4] H. BOHR and E. FØLNER, On some types of functional spaces, Acta Math., 76 (1944), 31-155. Zbl0061.16201
- [5] G. HARDY and J. LITTLEWOOD, Some properties of fractional integrals, Math. Zeit., 27 (1928), 564-606. Zbl0003.15601JFM54.0275.05
- [6] E. HEWITT and R. ROSS, Abstract Harmonic Analysis II, Springer Verlag, Berlin, 1970. Zbl0213.40103
- [7] K. LAU, On the Banach spaces of functions with bounded upper means, Pacific J. Math., (1980), to appear. Zbl0492.46027MR83b:46037
- [8] K. LAU and J. LEE. On generalized harmonic analysis, Trans. Amer. Math. Soc., 259 (1980), 75-97. Zbl0441.42007MR81i:42035
- [9] R. LARSEN, An introduction to the theory of multipliers, Springer Verlag, Berlin, (1971). Zbl0213.13301MR55 #8695
- [10] P. MASANI, Commentary on the memoire on generalized harmonic analysis [30a], Norbert Wiener : Collected Works, MIT Press, (1979), 333-379.
- [11] R. NELSON, The spaces of functions of finite upper p-variation, Trans. Amer. Math. Soc., 253 (1979), 171-190. Zbl0425.28007MR80i:46027
- [12] R. NELSON, Pointwise evaluation of Bochner integrals in Marcinkiewicz space, (to appear). Zbl0531.46033
- [13] N. WIENER, Generalized harmonic analysis, Acta Math., 55 (1930), 117-258. Zbl56.0954.02JFM56.0954.02
- [14] N. WIENER, Tauberian theorems Ann. of Math., 33 (1932), 1-100. Zbl0004.05905JFM58.0226.02
- [15] N. WIENER, The Fourier integral and certain of its applications, Dover, New York, 1959. Zbl0081.32102MR20 #6634
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.