The class of convolution operators on the Marcinkiewicz spaces

Ka-Sing Lau

Annales de l'institut Fourier (1981)

  • Volume: 31, Issue: 3, page 225-243
  • ISSN: 0373-0956

Abstract

top
Let 𝒯 X denote the operator-norm closure of the class of convolution operators Φ μ : X X where X is a suitable function space on R . Let r p be the closed subspace of regular functions in the Marinkiewicz space p , 1 p < . We show that the space 𝒯 r p is isometrically isomorphic to 𝒯 L p and that strong operator sequential convergence and norm convergence in 𝒯 r p coincide. We also obtain some results concerning convolution operators under the Wiener transformation. These are to improve a Tauberian theorem of Wiener on 2 .

How to cite

top

Lau, Ka-Sing. "The class of convolution operators on the Marcinkiewicz spaces." Annales de l'institut Fourier 31.3 (1981): 225-243. <http://eudml.org/doc/74505>.

@article{Lau1981,
abstract = {Let $\{\cal T\}_X$ denote the operator-norm closure of the class of convolution operators $\Phi _\mu : X\rightarrow X$ where $X$ is a suitable function space on $R$. Let $\{\cal M\}^p_r$ be the closed subspace of regular functions in the Marinkiewicz space $\{\cal M\}^p$, $1\le p&lt; \infty $. We show that the space $\{\cal T\}_\{\{\cal M\}^p_r\}$ is isometrically isomorphic to $\{\cal T\}_\{L^p\}$ and that strong operator sequential convergence and norm convergence in $\{\cal T\}_\{\{\cal M\}^p_r\}$ coincide. We also obtain some results concerning convolution operators under the Wiener transformation. These are to improve a Tauberian theorem of Wiener on $\{\cal M\}^2$.},
author = {Lau, Ka-Sing},
journal = {Annales de l'institut Fourier},
keywords = {class of convolution operators; Marcinkiewicz space; Wiener transformation; Tauberian theorem},
language = {eng},
number = {3},
pages = {225-243},
publisher = {Association des Annales de l'Institut Fourier},
title = {The class of convolution operators on the Marcinkiewicz spaces},
url = {http://eudml.org/doc/74505},
volume = {31},
year = {1981},
}

TY - JOUR
AU - Lau, Ka-Sing
TI - The class of convolution operators on the Marcinkiewicz spaces
JO - Annales de l'institut Fourier
PY - 1981
PB - Association des Annales de l'Institut Fourier
VL - 31
IS - 3
SP - 225
EP - 243
AB - Let ${\cal T}_X$ denote the operator-norm closure of the class of convolution operators $\Phi _\mu : X\rightarrow X$ where $X$ is a suitable function space on $R$. Let ${\cal M}^p_r$ be the closed subspace of regular functions in the Marinkiewicz space ${\cal M}^p$, $1\le p&lt; \infty $. We show that the space ${\cal T}_{{\cal M}^p_r}$ is isometrically isomorphic to ${\cal T}_{L^p}$ and that strong operator sequential convergence and norm convergence in ${\cal T}_{{\cal M}^p_r}$ coincide. We also obtain some results concerning convolution operators under the Wiener transformation. These are to improve a Tauberian theorem of Wiener on ${\cal M}^2$.
LA - eng
KW - class of convolution operators; Marcinkiewicz space; Wiener transformation; Tauberian theorem
UR - http://eudml.org/doc/74505
ER -

References

top
  1. [1] K. ANZAI, S. KOIZUMI and K. MATSUOKA, On the Wiener formula of functions of two variables, Tokyo J. Math., (to appear). Zbl0471.42013
  2. [2] J.P. BERTRANDIAS, Espaces de fonctions bornées et continues en moyenne asymptotique d'ordre p, Bull. Soc. Math. France, (1966), Mémoire 5. Zbl0148.11701MR33 #4598
  3. [3] J.P. BERTRANDIAS, Opérateurs subordinatifs sur des espaces de fonctions bornées en moyenne quadratique, J. Math. Pures et Appl., 52 (1973), 27-63. Zbl0266.46020MR53 #3766
  4. [4] H. BOHR and E. FØLNER, On some types of functional spaces, Acta Math., 76 (1944), 31-155. Zbl0061.16201
  5. [5] G. HARDY and J. LITTLEWOOD, Some properties of fractional integrals, Math. Zeit., 27 (1928), 564-606. Zbl0003.15601JFM54.0275.05
  6. [6] E. HEWITT and R. ROSS, Abstract Harmonic Analysis II, Springer Verlag, Berlin, 1970. Zbl0213.40103
  7. [7] K. LAU, On the Banach spaces of functions with bounded upper means, Pacific J. Math., (1980), to appear. Zbl0492.46027MR83b:46037
  8. [8] K. LAU and J. LEE. On generalized harmonic analysis, Trans. Amer. Math. Soc., 259 (1980), 75-97. Zbl0441.42007MR81i:42035
  9. [9] R. LARSEN, An introduction to the theory of multipliers, Springer Verlag, Berlin, (1971). Zbl0213.13301MR55 #8695
  10. [10] P. MASANI, Commentary on the memoire on generalized harmonic analysis [30a], Norbert Wiener : Collected Works, MIT Press, (1979), 333-379. 
  11. [11] R. NELSON, The spaces of functions of finite upper p-variation, Trans. Amer. Math. Soc., 253 (1979), 171-190. Zbl0425.28007MR80i:46027
  12. [12] R. NELSON, Pointwise evaluation of Bochner integrals in Marcinkiewicz space, (to appear). Zbl0531.46033
  13. [13] N. WIENER, Generalized harmonic analysis, Acta Math., 55 (1930), 117-258. Zbl56.0954.02JFM56.0954.02
  14. [14] N. WIENER, Tauberian theorems Ann. of Math., 33 (1932), 1-100. Zbl0004.05905JFM58.0226.02
  15. [15] N. WIENER, The Fourier integral and certain of its applications, Dover, New York, 1959. Zbl0081.32102MR20 #6634

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.