A class of locally convex spaces without 𝒞 -webs

Manuel Valdivia

Annales de l'institut Fourier (1982)

  • Volume: 32, Issue: 2, page 261-269
  • ISSN: 0373-0956

Abstract

top
In this article we give some properties of the tensor product, with the ϵ and π topologies, of two locally convex spaces. As a consequence we prove that the theory of M. de Wilde of the closed graph theorem does not contain the closed graph theorem of L. Schwartz.

How to cite

top

Valdivia, Manuel. "A class of locally convex spaces without ${\mathcal {C}}$-webs." Annales de l'institut Fourier 32.2 (1982): 261-269. <http://eudml.org/doc/74540>.

@article{Valdivia1982,
abstract = {In this article we give some properties of the tensor product, with the $\varepsilon $ and $\pi $ topologies, of two locally convex spaces. As a consequence we prove that the theory of M. de Wilde of the closed graph theorem does not contain the closed graph theorem of L. Schwartz.},
author = {Valdivia, Manuel},
journal = {Annales de l'institut Fourier},
keywords = {tensor product; Suslin space; De Wilde's closed graph theorem; Schwartz' closed graph theorem},
language = {eng},
number = {2},
pages = {261-269},
publisher = {Association des Annales de l'Institut Fourier},
title = {A class of locally convex spaces without $\{\mathcal \{C\}\}$-webs},
url = {http://eudml.org/doc/74540},
volume = {32},
year = {1982},
}

TY - JOUR
AU - Valdivia, Manuel
TI - A class of locally convex spaces without ${\mathcal {C}}$-webs
JO - Annales de l'institut Fourier
PY - 1982
PB - Association des Annales de l'Institut Fourier
VL - 32
IS - 2
SP - 261
EP - 269
AB - In this article we give some properties of the tensor product, with the $\varepsilon $ and $\pi $ topologies, of two locally convex spaces. As a consequence we prove that the theory of M. de Wilde of the closed graph theorem does not contain the closed graph theorem of L. Schwartz.
LA - eng
KW - tensor product; Suslin space; De Wilde's closed graph theorem; Schwartz' closed graph theorem
UR - http://eudml.org/doc/74540
ER -

References

top
  1. [1] I. AMEMIYA and Y. KOMURA, Über nich-vollständinge Montelräume, Math. Ann., 177 (1968), 273-277. Zbl0157.43903MR38 #508
  2. [2] N. BOURBAKI, Éléments de Mathématique, Topologie Générale Chap. IX, Hermann, Paris, 1974. 
  3. [3] N. BOURBAKI, Éléments de Mathématique, Espaces vectoriels topologiques, Act. Sci. et Ind., Paris, vol. 1929 (1955). 
  4. [4] M. DE WILDE, Réseaux dans les espaces linéaires à semi-normes, Mém. Soc. Royale Sci. Liège, 18 (5), 2 (1969), 1-144. Zbl0199.18103MR44 #3102
  5. [5] G. KÖTHE, Topological Vector Spaces II, Springer-Verlag, New York-Heidelberg-Berlin, 1979. Zbl0417.46001
  6. [6] H. LÖWIG, Über Die dimension linearer Räume, Studia Math., (1934), 18-23. Zbl0010.30404JFM60.1229.01
  7. [7] A. MARTINEAU, Sur le théorème du graphe fermé, C.R. Acad. Sci., Paris, 263 (1966), 870-871. Zbl0151.19203MR34 #6495
  8. [8] L. SCHWARTZ, Sur le théorème de graphe fermé. C.R. Acad. Sci., Paris 263 (1966), 602-605. Zbl0151.19202MR34 #6494
  9. [9] M. VALDIVIA, Absolutely convex sets in barrelled spaces, Ann. Inst. Fourier, Grenoble, 21, 2 (1971), 3-13. Zbl0205.40904MR48 #11968
  10. [10] M. VALDIVIA, On suprabarrelled spaces. Functional Analysis, Holomorphy and Approximation Theory. Proocedings, Rio de Janeiro 1978, Lecture Notes in Math., 843 (1981), 572-580, Springer-Verlag, New York-Heidelberg-Berlin. Zbl0469.46001MR82h:46003

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.