Microlocal regularity at the boundary for pseudo-differential operators with the transmission property (I)
Annales de l'institut Fourier (1982)
- Volume: 32, Issue: 3, page 183-213
- ISSN: 0373-0956
Access Full Article
topAbstract
topHow to cite
topDe Gosson, Maurice. "Microlocal regularity at the boundary for pseudo-differential operators with the transmission property (I)." Annales de l'institut Fourier 32.3 (1982): 183-213. <http://eudml.org/doc/74545>.
@article{DeGosson1982,
abstract = {This work is devoted to a systematic study of the microlocal regularity properties of pseudo-differential operators with the transmission property. We introduce a “boundary singular spectrum”, denoted $\partial WF_\omega (u)$ for distributions $u \in D^\{\prime \}(\{\bf R\}^n_+)$, regular in the normal variable $x_n$ (thus, $\partial WF_\omega (u)= \emptyset$ means that $u\in \cap _\{s+t=1/2\} H^\{s+t\}$ near the boundary), and it is shown that $\partial WF_\{\omega -m\} [P(u^0)_\{x_n>0\}]$ is a subset of $\partial WF(u)$ if $P$ has degree $m$ and the transmission property. We finally prove that these results can bef used to examinate the (microlocal) regularity of the solutions of differential Cauchy problems, with bicharacteristics transversal to the hyperplane supporting the Cauchy data.},
author = {De Gosson, Maurice},
journal = {Annales de l'institut Fourier},
keywords = {boundary singular spectrum; differential Cauchy problems; bicharacteristic transversal},
language = {eng},
number = {3},
pages = {183-213},
publisher = {Association des Annales de l'Institut Fourier},
title = {Microlocal regularity at the boundary for pseudo-differential operators with the transmission property (I)},
url = {http://eudml.org/doc/74545},
volume = {32},
year = {1982},
}
TY - JOUR
AU - De Gosson, Maurice
TI - Microlocal regularity at the boundary for pseudo-differential operators with the transmission property (I)
JO - Annales de l'institut Fourier
PY - 1982
PB - Association des Annales de l'Institut Fourier
VL - 32
IS - 3
SP - 183
EP - 213
AB - This work is devoted to a systematic study of the microlocal regularity properties of pseudo-differential operators with the transmission property. We introduce a “boundary singular spectrum”, denoted $\partial WF_\omega (u)$ for distributions $u \in D^{\prime }({\bf R}^n_+)$, regular in the normal variable $x_n$ (thus, $\partial WF_\omega (u)= \emptyset$ means that $u\in \cap _{s+t=1/2} H^{s+t}$ near the boundary), and it is shown that $\partial WF_{\omega -m} [P(u^0)_{x_n>0}]$ is a subset of $\partial WF(u)$ if $P$ has degree $m$ and the transmission property. We finally prove that these results can bef used to examinate the (microlocal) regularity of the solutions of differential Cauchy problems, with bicharacteristics transversal to the hyperplane supporting the Cauchy data.
LA - eng
KW - boundary singular spectrum; differential Cauchy problems; bicharacteristic transversal
UR - http://eudml.org/doc/74545
ER -
References
top- [1] K.G. ANDERSSON, R.B. MELROSE, The propagation of singularities along gliding rays, Invent. Math., 41 (1977). Zbl0373.35053MR58 #13221
- [2] L. BOUTET DE MONVEL, Boundary problems for pseudo differential operators, Acta. Math., 126 (1971). Zbl0206.39401MR53 #11674
- [3] J. CHAZARAIN, Reflection of C∞ singularities for a class of operators with multiple characteristics, Rims - Kyoto University, vol. 12, supp. 1977. Zbl0365.35050MR57 #10288
- [4] M. DE GOSSON, Hypoellipticité partielle à la frontière pour les opérateurs pseudo-différentiels de transmission, Annali di Mat. Pura ed Appl. serie IV, t. cxxiii (1980). Zbl0469.35080MR81g:35120
- [5] M. DE GOSSON, Parametrix de transmission pour des opérateurs de type parabolique etc, C.R. Acad. Sc., Paris, t. 292. Zbl0484.35046
- [6] M. DE GOSSON, Résultats microlocaux en hypoellipticité partielle à la frontière pour les O.P.D. de transmission, C.R. Acad Sc., Paris, t. 292. Zbl0469.35080
- [7] L. HÖRMANDER, Linear partial differential operators. Springer Verlag, 1964. Zbl0108.09301
- [8] L. HÖRMANDER, Pseudo-differential operators and non-elliptic boundary problems. Ann. Math., 83 (1966). Zbl0132.07402MR38 #1387
- [9] L. HÖRMANDER, On the existence and the regularity of solutions of linear pseudo-differential equations, L'Ens. Math., t. XVII, fasc. 2 (1972).
- [10] LIONS, MAGENES, Problèmes aux limites non homogènes et applications, vol. I, Dunod, 1968. Zbl0165.10801
- [11] R.B. MELROSE, Transformations of boundary problems, Preprint, Acta Math. (1980). Zbl0436.58024
- [12] R.B. MELROSE, J. SJÖSTRAND, Singularities of boundary problems, I, Comm. on Pure and Appl. Math., XXXI (1978). Zbl0368.35020
- [13] F. TREVES, Linear partial differential equations with constant coefficients, Gordon and breach, 1963.
- [14] J. SJÖSTRAND, Operators of principal type with interior boundary conditions, Acta Math., 130 (1973). Zbl0253.35076MR55 #9174
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.