Characteristic Cauchy problems and solutions of formal power series

Sunao Ouchi

Annales de l'institut Fourier (1983)

  • Volume: 33, Issue: 1, page 131-176
  • ISSN: 0373-0956

Abstract

top
Let L ( z , z ) = ( z 0 ) k - A ( z , z ) be a linear partial differential operator with holomorphic coefficients, where A ( z , z ) = j = 0 k - 1 A j ( z , z ' ) ( z 0 ) j , ord . A ( z , z ) = m > k and z = ( z 0 , z ' ) C n + 1 . We consider Cauchy problem with holomorphic data L ( z , z ) u ( z ) = f ( z ) , ( z 0 ) i u ( 0 , z ' ) = u ^ i ( z ' ) ( 0 i k - 1 ) . We can easily get a formal solution u ^ ( z ) = n = 0 u ^ n ( z ' ) ( z 0 ) n / n ! , bu in general it diverges. We show under some conditions that for any sector S with the opening less that a constant determined by L ( z , z ) , there is a function u S ( z ) holomorphic except on { z 0 = 0 } such that L ( z , z ) u S ( z ) = f ( z ) and u S ( z ) u ^ ( z ) as z 0 0 in S .

How to cite

top

Ouchi, Sunao. "Characteristic Cauchy problems and solutions of formal power series." Annales de l'institut Fourier 33.1 (1983): 131-176. <http://eudml.org/doc/74567>.

@article{Ouchi1983,
abstract = {Let $L(z,\partial _z)=(\partial _\{z_0\})^k-A(z,\partial _z)$ be a linear partial differential operator with holomorphic coefficients, where\begin\{\}A(z,\partial \_z)=\sum ^\{k-1\}\_\{j=0\}A\_j(z,\partial \_\{z^\{\prime \}\}) (\partial \_\{z\_0\})^j,~\{\rm ord\}.A(z,\partial \_z)=m&gt;k\end\{\}and\begin\{\}z=(z\_0,z^\{\prime \})\in C^\{n+1\}.\end\{\}We consider Cauchy problem with holomorphic data\begin\{\}L(z,\partial \_z)u(z)=f(z),~(\partial \_\{z\_0\})^iu(0,z^\{\prime \})= \hat\{u\}\_i(z^\{\prime \})~~ (0\le i\le k-1).\end\{\}We can easily get a formal solution $\hat\{u\}(z)=\sum ^\infty _\{n=0\}\hat\{u\}_n(z^\{\prime \})(z_0)^n/n!$, bu in general it diverges. We show under some conditions that for any sector $S$ with the opening less that a constant determined by $L(z,\partial _z)$, there is a function $u_S(z)$ holomorphic except on $\lbrace z_0=0\rbrace $ such that $L(z,\partial _z)u_S(z)=f(z)$ and $u_S(z)\sim \hat\{u\}(z)$ as $z_0\rightarrow 0$ in $S$.},
author = {Ouchi, Sunao},
journal = {Annales de l'institut Fourier},
keywords = {holomorphic coefficients; Cauchy problem; holomorphic data; formal solution},
language = {eng},
number = {1},
pages = {131-176},
publisher = {Association des Annales de l'Institut Fourier},
title = {Characteristic Cauchy problems and solutions of formal power series},
url = {http://eudml.org/doc/74567},
volume = {33},
year = {1983},
}

TY - JOUR
AU - Ouchi, Sunao
TI - Characteristic Cauchy problems and solutions of formal power series
JO - Annales de l'institut Fourier
PY - 1983
PB - Association des Annales de l'Institut Fourier
VL - 33
IS - 1
SP - 131
EP - 176
AB - Let $L(z,\partial _z)=(\partial _{z_0})^k-A(z,\partial _z)$ be a linear partial differential operator with holomorphic coefficients, where\begin{}A(z,\partial _z)=\sum ^{k-1}_{j=0}A_j(z,\partial _{z^{\prime }}) (\partial _{z_0})^j,~{\rm ord}.A(z,\partial _z)=m&gt;k\end{}and\begin{}z=(z_0,z^{\prime })\in C^{n+1}.\end{}We consider Cauchy problem with holomorphic data\begin{}L(z,\partial _z)u(z)=f(z),~(\partial _{z_0})^iu(0,z^{\prime })= \hat{u}_i(z^{\prime })~~ (0\le i\le k-1).\end{}We can easily get a formal solution $\hat{u}(z)=\sum ^\infty _{n=0}\hat{u}_n(z^{\prime })(z_0)^n/n!$, bu in general it diverges. We show under some conditions that for any sector $S$ with the opening less that a constant determined by $L(z,\partial _z)$, there is a function $u_S(z)$ holomorphic except on $\lbrace z_0=0\rbrace $ such that $L(z,\partial _z)u_S(z)=f(z)$ and $u_S(z)\sim \hat{u}(z)$ as $z_0\rightarrow 0$ in $S$.
LA - eng
KW - holomorphic coefficients; Cauchy problem; holomorphic data; formal solution
UR - http://eudml.org/doc/74567
ER -

References

top
  1. [1] Y. HAMADA, The singularity of solutions of Cauchy problem, Publ. Res. Inst. Math. Sci., 5 (1969), 21-40. Zbl0203.40702MR40 #3056
  2. [2] Y. HAMADA, Problème analytique de Cauchy à caractéristiques multiples dont les données de Cauchy ont des singularités polaires, C.R.A.S., Paris, Ser. A, 276 (1973), 1681-1684. Zbl0256.35012MR48 #4482
  3. [3] Y. HAMADA, J. LERAY et C. WAGSCHAL, Systèmes d'équations aux dérivées partielles à caractéristiques multiples ; Problème de Cauchy ramifié ; hyperbolicité partielle, J. Math. Pure Appl., 55 (1971), 297-352. Zbl0307.35056MR55 #8572
  4. [4] H. KOMATSU, Irregularity of characteristic elements and construction of null solutions, J. Fac. Sci. Univ. Tokyo, Sect. IA Math., 23 (1976), 297-342. Zbl0443.35009MR54 #5596
  5. [5] S. MIZOHATA, On kowalewskian systems, Russian Math. Survey, 29, vol. 2 (1974), 223-235. Zbl0305.35003MR53 #6063
  6. [6] S. ŌUCHI, Asymptotic behaviour of singular solutions of linear partial differential equations in the complex domain, J. Fac. Sci. Univ. Tokyo, Sect. IA Math., 27 (1980), 1-36. Zbl0441.35020MR81m:35019
  7. [7] S. ŌUCHI, An integral representation of singular solutions of linear partial differential equations in the complex domain, J. Fac. Sci. Univ. Tokyo, Sect. IA Math., 27 (1980), 37-85. Zbl0439.35019MR82e:35002
  8. [8] S. ŌUCHI, Characteristic Cauchy problems and solutions of formal power series, Proc. Japan Acad., vol. 56 (1980), 372-375. Zbl0467.35001MR83g:35024
  9. [9] J. PERSSON, On the Cauchy problem in Cn with singular data, Mathematiche, 30 (1975), 339-362. Zbl0359.35048MR56 #16128
  10. [10] C. WAGSCHAL, Problème de Cauchy analytique à données méromorphes, J. Math. Pure Appl., 51 (1972), 375-397. Zbl0242.35016MR50 #784
  11. [11] W. WASOW, Asymptotic expansions for ordinary differential equations, Interscience Publishers, 1965. Zbl0133.35301MR34 #3041

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.