Le théorème de complexification semi-propre

E. Fortuna; M. Galbiati

Annales de l'institut Fourier (1983)

  • Volume: 33, Issue: 1, page 53-65
  • ISSN: 0373-0956

Abstract

top
It is well-known that the image of a complex analytic semi-proper map is an analytic set; in the real case, the image is in general subanalytic. In this paper we find a condition for the semi-analyticity of the image of a real analytic semi-proper map which has a semi-proper complexification.

How to cite

top

Fortuna, E., and Galbiati, M.. "Le théorème de complexification semi-propre." Annales de l'institut Fourier 33.1 (1983): 53-65. <http://eudml.org/doc/74575>.

@article{Fortuna1983,
abstract = {Il est bien connu que l’image d’une application analytique complexe semi-propre est un ensemble analytique; dans le cas réel elle est en général sous-analytique. Dans cet article on donne des conditions pour la semi-analyticité de l’image d’une application analytique réelle, semi-propre qui admet une complexification semi-propre.},
author = {Fortuna, E., Galbiati, M.},
journal = {Annales de l'institut Fourier},
keywords = {subanalytic image of real analytic semi-proper map; semi-proper complexification},
language = {fre},
number = {1},
pages = {53-65},
publisher = {Association des Annales de l'Institut Fourier},
title = {Le théorème de complexification semi-propre},
url = {http://eudml.org/doc/74575},
volume = {33},
year = {1983},
}

TY - JOUR
AU - Fortuna, E.
AU - Galbiati, M.
TI - Le théorème de complexification semi-propre
JO - Annales de l'institut Fourier
PY - 1983
PB - Association des Annales de l'Institut Fourier
VL - 33
IS - 1
SP - 53
EP - 65
AB - Il est bien connu que l’image d’une application analytique complexe semi-propre est un ensemble analytique; dans le cas réel elle est en général sous-analytique. Dans cet article on donne des conditions pour la semi-analyticité de l’image d’une application analytique réelle, semi-propre qui admet une complexification semi-propre.
LA - fre
KW - subanalytic image of real analytic semi-proper map; semi-proper complexification
UR - http://eudml.org/doc/74575
ER -

References

top
  1. [1] A. ANDREOTTI, W. STOLL, Analytic and algebraic dependence of meromorphic functions, Lecture notes in Mathematics, vol. 234, Berlin, Heidelberg, New York, Springer, 1971. Zbl0222.32013MR52 #11124
  2. [2] M. GALBIATI, Sur l'image d'un morphisme analytique réel propre, Ann. Scuola Norm. Sup. Pisa, Cl. Sci., Serie IV, vol. III (1976), 311-319. Zbl0325.32002MR54 #7834
  3. [3] H. HIRONAKA, Stratification and flatness. Dans : Real and Complex Singularities, Nordic Summer School Oslo 1976, 199-265, Alphen aan den Rijn, Sijthoff & Noordhoff 1977. Zbl0424.32004
  4. [4] H. HIRONAKA, Subanalytic sets. Dans : Number theory, in honour of Akizuki, Tokyo, Kinokuniya, 1973. Zbl0297.32008MR51 #13275
  5. [5] H. HIRONAKA, Introduction to real analytic sets and real analytic maps, Quaderno dei gruppi di ricerca del C.N.R., Pisa, Istituto Mat. "L. Tonelli", 1973. 
  6. [6] N. KUHLMANN, Ueber holomorphie Abbildungen komplexer Räume, Arch. Math., 15 (1964), 81-90. Zbl0122.08701MR30 #2165
  7. [7] N. KUHLMANN, Algebraic function fields on complex analytic spaces. Dans : Proc. Conf. on Compl. Anal. Minneapolis, 1964, 155-172. Berlin, Heidelberg, New York, Springer, 1965. Zbl0144.08002
  8. [8] N. KUHLMANN, Bemerkungen über holomorphe Abbildungen komplexer Räume. Dans : Festchr. Gedächtnisfeier K. Weierstr., 475-522, Cologne, Westdeutscher Verlag, 1966. Zbl0144.34001

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.