Moebius-invariant algebras in balls
Annales de l'institut Fourier (1983)
- Volume: 33, Issue: 2, page 19-41
- ISSN: 0373-0956
Access Full Article
topAbstract
topHow to cite
topRudin, Walter. "Moebius-invariant algebras in balls." Annales de l'institut Fourier 33.2 (1983): 19-41. <http://eudml.org/doc/74585>.
@article{Rudin1983,
abstract = {It is proved that the Fréchet algebra $C(B)$ has exactly three closed subalgebras $Y$ which contain nonconstant functions and which are invariant, in the sense that $f\circ \Psi \in Y$ whenever $f\in Y$ and $\Psi $ is a biholomorphic map of the open unit ball $B$ of $\{\bf C\}^n$ onto $B$. One of these consists of the holomorphic functions in $B$, the second consists of those whose complex conjugates are holomorphic, and the third is $C(B)$.},
author = {Rudin, Walter},
journal = {Annales de l'institut Fourier},
keywords = {Moebius-invariant algebras; Frechet algebra},
language = {eng},
number = {2},
pages = {19-41},
publisher = {Association des Annales de l'Institut Fourier},
title = {Moebius-invariant algebras in balls},
url = {http://eudml.org/doc/74585},
volume = {33},
year = {1983},
}
TY - JOUR
AU - Rudin, Walter
TI - Moebius-invariant algebras in balls
JO - Annales de l'institut Fourier
PY - 1983
PB - Association des Annales de l'Institut Fourier
VL - 33
IS - 2
SP - 19
EP - 41
AB - It is proved that the Fréchet algebra $C(B)$ has exactly three closed subalgebras $Y$ which contain nonconstant functions and which are invariant, in the sense that $f\circ \Psi \in Y$ whenever $f\in Y$ and $\Psi $ is a biholomorphic map of the open unit ball $B$ of ${\bf C}^n$ onto $B$. One of these consists of the holomorphic functions in $B$, the second consists of those whose complex conjugates are holomorphic, and the third is $C(B)$.
LA - eng
KW - Moebius-invariant algebras; Frechet algebra
UR - http://eudml.org/doc/74585
ER -
References
top- [1] M. L. AGRANOVSKII, Invariant algebras on the boundaries of symmetric domains, Soviet Math. Dokl., 12 (1971), 371-374. Zbl0225.32012
- [2] M. L. AGRANOVSKII, Invariant algebras on noncompact Riemannian symmetric spaces, Soviet Math. Dokl., 13 (1972), 1538-1542. Zbl0279.46026MR47 #2276
- [3] M. L. AGRANOVSKII and R. E. VALSKII, Maximality of invariant algebras of functions, Sib. Math. J., 12 (1971), 1-7. Zbl0226.46059MR44 #3128
- [4] H. ALEXANDER, Polynomial approximation and hulls of sets of finite linear measure in Cn, Amer. J. Math., 93 (1971), 65-75. Zbl0221.32011MR44 #1841
- [5] C. A. BERENSTEIN and L. ZALCMAN, Pompeiu's problem on spaces of constant curvature, J. d'Anal. Math., 30 (1976), 113-130. Zbl0332.35033MR55 #11172
- [6] C. A. BERENSTEIN and L. ZALCMAN, Pompeiu's problem on symmetric spaces, Comment. Math. Helvetici, 55 (1980), 593-621. Zbl0452.43012MR83d:43012
- [7] R. COURANT and D. HILBERT, Methoden der Mathematischen Physik, vol. II, Springer, 1937. Zbl0017.39702JFM63.0449.05
- [8] F. JOHN, Plane Waves and Spherical Means Applied to Partial Differential Equations, Interscience, 1955. Zbl0067.32101MR17,746d
- [9] K. de LEEUW and H. MIRKIL, Rotation-invariant algebras on the n-sphere, Duke Math. J., 30 (1963), 667-672. Zbl0194.16101MR27 #5117
- [10] A. NAGEL and W. RUDIN, Moebius-invariant function spaces on balls and spheres, Duke Math. J., 43 (1976), 841-865. Zbl0343.32017MR54 #13135
- [11] W. RUDIN, Function Theory in the Unit Ball of Cn, Springer, 1980. Zbl0495.32001MR82i:32002
- [12] W. RUDIN, Functional Analysis, Mc Graw-Hill, 1973. Zbl0253.46001MR51 #1315
- [13] G. STOLZENBERG, Uniform approximation on smooth curves, Acta Math., 115 (1966), 185-198. Zbl0143.30005MR33 #307
- [14] E. L. STOUT, The Theory of Uniform Algebras, Bogden and Quigley, 1971. Zbl0286.46049MR54 #11066
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.