Unfoldings of foliations with multiform first integrals
Annales de l'institut Fourier (1983)
- Volume: 33, Issue: 3, page 99-112
 - ISSN: 0373-0956
 
Access Full Article
topAbstract
topHow to cite
topSuwa, Tatsuo. "Unfoldings of foliations with multiform first integrals." Annales de l'institut Fourier 33.3 (1983): 99-112. <http://eudml.org/doc/74602>.
@article{Suwa1983,
	abstract = {Let $F=(\omega )$ be a codim 1 local foliation generated by a germ $\omega $ of the form $\omega =f_1\ldots f_p\sum ^p_\{i=1\}\lambda _i \{df_i\over f_i\}$ for some complex numbers $\lambda _i$ and germs $f_i$ of holomorphic functions at the origin in $\{\bf C\}^n$. We determine, under some conditions, the set of equivalence classes of first order unfoldings and construct explicitly a universal unfolding of $F$. Special cases of this include foliations with holomorphic or meromorphic first integrals. We also show that the unfolding theory for $F$ is equivalent to the unfolding theory for the multiform function $f=f^\{\lambda _1\}_1\ldots f^\{\lambda _p\}_p$. Thus a universal unfolding of $f$ is also given explicity.},
	author = {Suwa, Tatsuo},
	journal = {Annales de l'institut Fourier},
	keywords = {unfoldings of foliations; complex codim 1 local foliation; foliations with holomorphic or meromorphic first integrals; unfolding theory for the multiform function},
	language = {eng},
	number = {3},
	pages = {99-112},
	publisher = {Association des Annales de l'Institut Fourier},
	title = {Unfoldings of foliations with multiform first integrals},
	url = {http://eudml.org/doc/74602},
	volume = {33},
	year = {1983},
}
TY  - JOUR
AU  - Suwa, Tatsuo
TI  - Unfoldings of foliations with multiform first integrals
JO  - Annales de l'institut Fourier
PY  - 1983
PB  - Association des Annales de l'Institut Fourier
VL  - 33
IS  - 3
SP  - 99
EP  - 112
AB  - Let $F=(\omega )$ be a codim 1 local foliation generated by a germ $\omega $ of the form $\omega =f_1\ldots f_p\sum ^p_{i=1}\lambda _i {df_i\over f_i}$ for some complex numbers $\lambda _i$ and germs $f_i$ of holomorphic functions at the origin in ${\bf C}^n$. We determine, under some conditions, the set of equivalence classes of first order unfoldings and construct explicitly a universal unfolding of $F$. Special cases of this include foliations with holomorphic or meromorphic first integrals. We also show that the unfolding theory for $F$ is equivalent to the unfolding theory for the multiform function $f=f^{\lambda _1}_1\ldots f^{\lambda _p}_p$. Thus a universal unfolding of $f$ is also given explicity.
LA  - eng
KW  - unfoldings of foliations; complex codim 1 local foliation; foliations with holomorphic or meromorphic first integrals; unfolding theory for the multiform function
UR  - http://eudml.org/doc/74602
ER  - 
References
top- [1] D. CERVEAU, Contribution à l'étude des formes intégrables singulières, Thèse, Université de Dijon, 1981.
 - [2] D. CERVEAU et A. LINS NETO, Formes intégrables tangentes à des actions commutatives, C.R.A.S., Paris, 291 (1980), 647-649. Zbl0458.53021MR82b:58003
 - [3] D. CERVEAU et J.F. MATTEI, Intégrales premières, to appear in Astérisque.
 - [4] D. CERVEAU et R. MOUSSU, Extension de facteurs intégrants et applications, C.R.A.S., Paris, 294 (1982), 17-19. Zbl0504.58005MR83m:58006
 - [5] J.F. MATTEI et R. MOUSSU, Holonomie et intégrales premières, Ann. Scient. Ec. Norm. Sup., 13 (1980), 469-523. Zbl0458.32005MR83b:58005
 - [6] T. SUWA, Unfoldings of complex analytic foliations with singularities, to appear in Japanese J. of Math., 9 (1983). Zbl0591.32020MR85h:32036
 - [7] T. SUWA, A theorem of versality for unfoldings of complex analytic foliation singularities, Invent. Math., 65 (1981), 29-48. Zbl0487.32016MR83e:32025
 - [8] T. SUWA, Singularities of complex analytic foliations, to appear in the Proceedings of Symposia in Pure Math. 40, Amer. Math. Soc. Zbl0552.32008MR85a:32029
 - [9] T. SUWA, Kupka-Reeb phenomena and universal unfoldings of certain foliation singularities, to appear in Osaka J. of Math., 20. Zbl0522.58008MR85g:58073
 - [10] T. SUWA, Unfoldings of meromorphic functions, Math. Ann., 262 (1983), 215-224. Zbl0491.58009MR85g:32030
 
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.