Unfoldings of foliations with multiform first integrals

Tatsuo Suwa

Annales de l'institut Fourier (1983)

  • Volume: 33, Issue: 3, page 99-112
  • ISSN: 0373-0956

Abstract

top
Let F = ( ω ) be a codim 1 local foliation generated by a germ ω of the form ω = f 1 ... f p i = 1 p λ i d f i f i for some complex numbers λ i and germs f i of holomorphic functions at the origin in C n . We determine, under some conditions, the set of equivalence classes of first order unfoldings and construct explicitly a universal unfolding of F . Special cases of this include foliations with holomorphic or meromorphic first integrals. We also show that the unfolding theory for F is equivalent to the unfolding theory for the multiform function f = f 1 λ 1 ... f p λ p . Thus a universal unfolding of f is also given explicity.

How to cite

top

Suwa, Tatsuo. "Unfoldings of foliations with multiform first integrals." Annales de l'institut Fourier 33.3 (1983): 99-112. <http://eudml.org/doc/74602>.

@article{Suwa1983,
abstract = {Let $F=(\omega )$ be a codim 1 local foliation generated by a germ $\omega $ of the form $\omega =f_1\ldots f_p\sum ^p_\{i=1\}\lambda _i \{df_i\over f_i\}$ for some complex numbers $\lambda _i$ and germs $f_i$ of holomorphic functions at the origin in $\{\bf C\}^n$. We determine, under some conditions, the set of equivalence classes of first order unfoldings and construct explicitly a universal unfolding of $F$. Special cases of this include foliations with holomorphic or meromorphic first integrals. We also show that the unfolding theory for $F$ is equivalent to the unfolding theory for the multiform function $f=f^\{\lambda _1\}_1\ldots f^\{\lambda _p\}_p$. Thus a universal unfolding of $f$ is also given explicity.},
author = {Suwa, Tatsuo},
journal = {Annales de l'institut Fourier},
keywords = {unfoldings of foliations; complex codim 1 local foliation; foliations with holomorphic or meromorphic first integrals; unfolding theory for the multiform function},
language = {eng},
number = {3},
pages = {99-112},
publisher = {Association des Annales de l'Institut Fourier},
title = {Unfoldings of foliations with multiform first integrals},
url = {http://eudml.org/doc/74602},
volume = {33},
year = {1983},
}

TY - JOUR
AU - Suwa, Tatsuo
TI - Unfoldings of foliations with multiform first integrals
JO - Annales de l'institut Fourier
PY - 1983
PB - Association des Annales de l'Institut Fourier
VL - 33
IS - 3
SP - 99
EP - 112
AB - Let $F=(\omega )$ be a codim 1 local foliation generated by a germ $\omega $ of the form $\omega =f_1\ldots f_p\sum ^p_{i=1}\lambda _i {df_i\over f_i}$ for some complex numbers $\lambda _i$ and germs $f_i$ of holomorphic functions at the origin in ${\bf C}^n$. We determine, under some conditions, the set of equivalence classes of first order unfoldings and construct explicitly a universal unfolding of $F$. Special cases of this include foliations with holomorphic or meromorphic first integrals. We also show that the unfolding theory for $F$ is equivalent to the unfolding theory for the multiform function $f=f^{\lambda _1}_1\ldots f^{\lambda _p}_p$. Thus a universal unfolding of $f$ is also given explicity.
LA - eng
KW - unfoldings of foliations; complex codim 1 local foliation; foliations with holomorphic or meromorphic first integrals; unfolding theory for the multiform function
UR - http://eudml.org/doc/74602
ER -

References

top
  1. [1] D. CERVEAU, Contribution à l'étude des formes intégrables singulières, Thèse, Université de Dijon, 1981. 
  2. [2] D. CERVEAU et A. LINS NETO, Formes intégrables tangentes à des actions commutatives, C.R.A.S., Paris, 291 (1980), 647-649. Zbl0458.53021MR82b:58003
  3. [3] D. CERVEAU et J.F. MATTEI, Intégrales premières, to appear in Astérisque. 
  4. [4] D. CERVEAU et R. MOUSSU, Extension de facteurs intégrants et applications, C.R.A.S., Paris, 294 (1982), 17-19. Zbl0504.58005MR83m:58006
  5. [5] J.F. MATTEI et R. MOUSSU, Holonomie et intégrales premières, Ann. Scient. Ec. Norm. Sup., 13 (1980), 469-523. Zbl0458.32005MR83b:58005
  6. [6] T. SUWA, Unfoldings of complex analytic foliations with singularities, to appear in Japanese J. of Math., 9 (1983). Zbl0591.32020MR85h:32036
  7. [7] T. SUWA, A theorem of versality for unfoldings of complex analytic foliation singularities, Invent. Math., 65 (1981), 29-48. Zbl0487.32016MR83e:32025
  8. [8] T. SUWA, Singularities of complex analytic foliations, to appear in the Proceedings of Symposia in Pure Math. 40, Amer. Math. Soc. Zbl0552.32008MR85a:32029
  9. [9] T. SUWA, Kupka-Reeb phenomena and universal unfoldings of certain foliation singularities, to appear in Osaka J. of Math., 20. Zbl0522.58008MR85g:58073
  10. [10] T. SUWA, Unfoldings of meromorphic functions, Math. Ann., 262 (1983), 215-224. Zbl0491.58009MR85g:32030

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.