On the distribution of integral and prime divisors with equal norms

Baruch Z. Moroz

Annales de l'institut Fourier (1984)

  • Volume: 34, Issue: 4, page 1-17
  • ISSN: 0373-0956

Abstract

top
In finite Galois extensions k 1 , ... , k r of Q with pairwise coprime discriminants the integral and the prime divisors subject to the condition N k 1 / Q 𝔞 r = = N k r / Q 𝔞 r are equidistributed in the sense of E. Hecke.

How to cite

top

Moroz, Baruch Z.. "On the distribution of integral and prime divisors with equal norms." Annales de l'institut Fourier 34.4 (1984): 1-17. <http://eudml.org/doc/74655>.

@article{Moroz1984,
abstract = {In finite Galois extensions $k_1,\ldots ,k_r$ of $\{\bf Q\}$ with pairwise coprime discriminants the integral and the prime divisors subject to the condition $N_\{k_1/\{\bf Q\}\} \{\frak a\}_r = \cdots = N_\{k_r/\{\bf Q\}\}\{\frak a\}_r$ are equidistributed in the sense of E. Hecke.},
author = {Moroz, Baruch Z.},
journal = {Annales de l'institut Fourier},
keywords = {estimates of character sums; equidistribution; ideals with equal norms},
language = {eng},
number = {4},
pages = {1-17},
publisher = {Association des Annales de l'Institut Fourier},
title = {On the distribution of integral and prime divisors with equal norms},
url = {http://eudml.org/doc/74655},
volume = {34},
year = {1984},
}

TY - JOUR
AU - Moroz, Baruch Z.
TI - On the distribution of integral and prime divisors with equal norms
JO - Annales de l'institut Fourier
PY - 1984
PB - Association des Annales de l'Institut Fourier
VL - 34
IS - 4
SP - 1
EP - 17
AB - In finite Galois extensions $k_1,\ldots ,k_r$ of ${\bf Q}$ with pairwise coprime discriminants the integral and the prime divisors subject to the condition $N_{k_1/{\bf Q}} {\frak a}_r = \cdots = N_{k_r/{\bf Q}}{\frak a}_r$ are equidistributed in the sense of E. Hecke.
LA - eng
KW - estimates of character sums; equidistribution; ideals with equal norms
UR - http://eudml.org/doc/74655
ER -

References

top
  1. [1] E. HECKE, Eine neue Art von Zetafunktionen und ihre Bezeihungen zur Verteilung der Primzahlen, Math. Zeitschrift, 6 (1920), 11-51. JFM47.0152.01
  2. [2] B. Z. MOROZ, Distribution of integral ideals with equal norms in the fields of algebraic numbers, I.H.E.S. Preprint, October 1982. 
  3. [3] H. RADEMACHER, Primzahlen reel-quadratischer Zahlkörper in Winkelräumen Math. Annalen, 111 (1935), 209-228. Zbl0011.15001JFM61.0172.02
  4. [4] J. P. KUBILIUS, One some problems in geometry of numbers, Math. Sbornik USSR, 31 (1952), 507-542. Zbl0049.03301
  5. [5] T. MITSUI, Generalized Prime Number Theorem, Japanese Journal of Mathematics, 26 (1956), 1-42. Zbl0126.27503MR19,1161g
  6. [6] H. HASSE, Zetafunktionen und L-funktionen zu Funktionenkörpern vom Fermatschen Typus, § 9, Gesammelte Werke, Bd. II, p. 487-497. Zbl0068.03501
  7. [7] T. MITSUI, Some prime number theorems for algebraic number fields, Proc. Sympos. Res. Inst. Math. Sci., Kyoto Univ., Kyoto 1977, N. 294, p. 100-123 (MR 57 # 3092). Zbl0431.12011MR57 #3090
  8. [8] YU. V. LINNIK, Ergodic properties of algebraic fields, Springer Verlag, 1968, Chapter IX. Zbl0162.06801
  9. [9] E. P. GOLUBEVA, On representation of large numbers by ternary quadratic forms, Doklady Acad. of Sci. of the U.S.S.R., 191 (1970), 519-521. Zbl0243.10019MR41 #5295
  10. [10] W.-CH. W. LI, On converse theorems for GL(2) and GL(1), American Journal of Mathematics, 103 (1981), 883. Zbl0477.12013MR83b:22024
  11. [11] YU. V. LINNIK, Private communications. 
  12. [12] N. KUROKAWA, On Linnik's Problem, Proc. Japan Academy, 54 A (1978), 167-169 (see also: Tokyo Institute of Technology Preprint, 1977). Zbl0409.12019MR58 #22022
  13. [13] B. Z. MOROZ, Scalar products of L-functions with Grössencharacters, J. für die reine und angewandte Mathematik, Bd. 332 (1982), 99-117. Zbl0495.12014MR83j:12010
  14. [14] B. Z. MOROZ, On the convolution of L-functions, Mathematika, 27 (1980), 312-320. Zbl0437.12013MR82f:12020
  15. [15] E. C. TITCHMARSH, Theory of Riemann Zeta-function, Oxford, 1951. Zbl0042.07901MR13,741c
  16. [16] H. FOGELS, On the zeros of Hecke's L-functions I, Acta Arithmetica, 7 (1961/1962), 87-106. Zbl0100.03801MR25 #55
  17. [17] W.-CH. W. LI, B. Z. MOROZ, On ideal classes of number fields containing integral ideals of equal norms, Journal of Number Theory, to appear. Zbl0576.12009
  18. [18] H. WEYL, Über die Gleichverteilung von Zahlen mod Eins. Math. Annalen, 77 (1916), 313-352. Zbl46.0278.06JFM46.0278.06
  19. [19] P.K.J. DRAXL, L-funktionen Algebraischer Tori, Journal of Number Theory, 3 (1971), 444-467. Zbl0231.12018MR45 #193
  20. [20] A. I. VINOGRADOVOn the extension to the left half-plane of the scalar product of Hecke's L-series with Grössencharacters, Izvestia U.S.S.R. Acad. of Sci., Math. Series, 29 (1965), 485-492. 
  21. [21] P. K. J. DRAXL, Functions L et représentation simultanée d'un nombre premier par plusieurs formes quadratiques, Séminaire Delange-Pisot-Poitou, 12e année, 1970/1971. Zbl0244.12013
  22. [22] K. CHANDRASEKHARAN, R. NARASIMHAN, The approximate functional equation for a class of zeta-functions, Math. Ann., 152 (1963), 30-64. Zbl0116.27001MR27 #3605
  23. [23] K. CHANDRASEKHARAN, A. GOOD, On the number of Integral Ideals in Galois Extensions, Monatshefte für Mathematik, 95 (1983), 99-109. Zbl0498.12009MR84i:12008
  24. [24] R. A. RANKIN, Sums of powers of cusp form coefficients, Math. Ann., 263 (1983), 227-236. Zbl0492.10020MR84h:10033

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.