On the distribution of integral and prime divisors with equal norms
Annales de l'institut Fourier (1984)
- Volume: 34, Issue: 4, page 1-17
- ISSN: 0373-0956
Access Full Article
topAbstract
topHow to cite
topMoroz, Baruch Z.. "On the distribution of integral and prime divisors with equal norms." Annales de l'institut Fourier 34.4 (1984): 1-17. <http://eudml.org/doc/74655>.
@article{Moroz1984,
abstract = {In finite Galois extensions $k_1,\ldots ,k_r$ of $\{\bf Q\}$ with pairwise coprime discriminants the integral and the prime divisors subject to the condition $N_\{k_1/\{\bf Q\}\} \{\frak a\}_r = \cdots = N_\{k_r/\{\bf Q\}\}\{\frak a\}_r$ are equidistributed in the sense of E. Hecke.},
author = {Moroz, Baruch Z.},
journal = {Annales de l'institut Fourier},
keywords = {estimates of character sums; equidistribution; ideals with equal norms},
language = {eng},
number = {4},
pages = {1-17},
publisher = {Association des Annales de l'Institut Fourier},
title = {On the distribution of integral and prime divisors with equal norms},
url = {http://eudml.org/doc/74655},
volume = {34},
year = {1984},
}
TY - JOUR
AU - Moroz, Baruch Z.
TI - On the distribution of integral and prime divisors with equal norms
JO - Annales de l'institut Fourier
PY - 1984
PB - Association des Annales de l'Institut Fourier
VL - 34
IS - 4
SP - 1
EP - 17
AB - In finite Galois extensions $k_1,\ldots ,k_r$ of ${\bf Q}$ with pairwise coprime discriminants the integral and the prime divisors subject to the condition $N_{k_1/{\bf Q}} {\frak a}_r = \cdots = N_{k_r/{\bf Q}}{\frak a}_r$ are equidistributed in the sense of E. Hecke.
LA - eng
KW - estimates of character sums; equidistribution; ideals with equal norms
UR - http://eudml.org/doc/74655
ER -
References
top- [1] E. HECKE, Eine neue Art von Zetafunktionen und ihre Bezeihungen zur Verteilung der Primzahlen, Math. Zeitschrift, 6 (1920), 11-51. JFM47.0152.01
- [2] B. Z. MOROZ, Distribution of integral ideals with equal norms in the fields of algebraic numbers, I.H.E.S. Preprint, October 1982.
- [3] H. RADEMACHER, Primzahlen reel-quadratischer Zahlkörper in Winkelräumen Math. Annalen, 111 (1935), 209-228. Zbl0011.15001JFM61.0172.02
- [4] J. P. KUBILIUS, One some problems in geometry of numbers, Math. Sbornik USSR, 31 (1952), 507-542. Zbl0049.03301
- [5] T. MITSUI, Generalized Prime Number Theorem, Japanese Journal of Mathematics, 26 (1956), 1-42. Zbl0126.27503MR19,1161g
- [6] H. HASSE, Zetafunktionen und L-funktionen zu Funktionenkörpern vom Fermatschen Typus, § 9, Gesammelte Werke, Bd. II, p. 487-497. Zbl0068.03501
- [7] T. MITSUI, Some prime number theorems for algebraic number fields, Proc. Sympos. Res. Inst. Math. Sci., Kyoto Univ., Kyoto 1977, N. 294, p. 100-123 (MR 57 # 3092). Zbl0431.12011MR57 #3090
- [8] YU. V. LINNIK, Ergodic properties of algebraic fields, Springer Verlag, 1968, Chapter IX. Zbl0162.06801
- [9] E. P. GOLUBEVA, On representation of large numbers by ternary quadratic forms, Doklady Acad. of Sci. of the U.S.S.R., 191 (1970), 519-521. Zbl0243.10019MR41 #5295
- [10] W.-CH. W. LI, On converse theorems for GL(2) and GL(1), American Journal of Mathematics, 103 (1981), 883. Zbl0477.12013MR83b:22024
- [11] YU. V. LINNIK, Private communications.
- [12] N. KUROKAWA, On Linnik's Problem, Proc. Japan Academy, 54 A (1978), 167-169 (see also: Tokyo Institute of Technology Preprint, 1977). Zbl0409.12019MR58 #22022
- [13] B. Z. MOROZ, Scalar products of L-functions with Grössencharacters, J. für die reine und angewandte Mathematik, Bd. 332 (1982), 99-117. Zbl0495.12014MR83j:12010
- [14] B. Z. MOROZ, On the convolution of L-functions, Mathematika, 27 (1980), 312-320. Zbl0437.12013MR82f:12020
- [15] E. C. TITCHMARSH, Theory of Riemann Zeta-function, Oxford, 1951. Zbl0042.07901MR13,741c
- [16] H. FOGELS, On the zeros of Hecke's L-functions I, Acta Arithmetica, 7 (1961/1962), 87-106. Zbl0100.03801MR25 #55
- [17] W.-CH. W. LI, B. Z. MOROZ, On ideal classes of number fields containing integral ideals of equal norms, Journal of Number Theory, to appear. Zbl0576.12009
- [18] H. WEYL, Über die Gleichverteilung von Zahlen mod Eins. Math. Annalen, 77 (1916), 313-352. Zbl46.0278.06JFM46.0278.06
- [19] P.K.J. DRAXL, L-funktionen Algebraischer Tori, Journal of Number Theory, 3 (1971), 444-467. Zbl0231.12018MR45 #193
- [20] A. I. VINOGRADOVOn the extension to the left half-plane of the scalar product of Hecke's L-series with Grössencharacters, Izvestia U.S.S.R. Acad. of Sci., Math. Series, 29 (1965), 485-492.
- [21] P. K. J. DRAXL, Functions L et représentation simultanée d'un nombre premier par plusieurs formes quadratiques, Séminaire Delange-Pisot-Poitou, 12e année, 1970/1971. Zbl0244.12013
- [22] K. CHANDRASEKHARAN, R. NARASIMHAN, The approximate functional equation for a class of zeta-functions, Math. Ann., 152 (1963), 30-64. Zbl0116.27001MR27 #3605
- [23] K. CHANDRASEKHARAN, A. GOOD, On the number of Integral Ideals in Galois Extensions, Monatshefte für Mathematik, 95 (1983), 99-109. Zbl0498.12009MR84i:12008
- [24] R. A. RANKIN, Sums of powers of cusp form coefficients, Math. Ann., 263 (1983), 227-236. Zbl0492.10020MR84h:10033
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.