Topological triviality of versal unfoldings of complete intersections
Annales de l'institut Fourier (1984)
- Volume: 34, Issue: 4, page 225-251
- ISSN: 0373-0956
Access Full Article
topAbstract
topHow to cite
topDamon, James. "Topological triviality of versal unfoldings of complete intersections." Annales de l'institut Fourier 34.4 (1984): 225-251. <http://eudml.org/doc/74657>.
@article{Damon1984,
abstract = {We obtain algebraic and geometric conditions for the topological triviality of versal unfoldings of weighted homogeneous complete intersections along subspaces corresponding to deformations of maximal weight. These results are applied: to infinite families of surface singularities in $C^4$ which begin with the exceptional unimodular singularities, to the intersection of pairs of generic quadrics, and to certain curve singularities.The algebraic conditions are related to the operation of adjoining powers, a generalization for complete intersections of a special form of the Thom-Sebastiani operation. A duality result is proven which relates the Jacobian algebra of $f$ being Gorenstein with $\widetilde\{N\}(F)^*$ being principal, i.e. generated by one element (here $F$ is obtained from $f$ by adjoining powers, and $\widetilde\{N\}(F)^*$ is the dual of the space of non-trivial infinitesimal deformations.},
author = {Damon, James},
journal = {Annales de l'institut Fourier},
keywords = {exceptional unimodular singularities; Thom-Sebastiani operation; Jacobian algebra},
language = {eng},
number = {4},
pages = {225-251},
publisher = {Association des Annales de l'Institut Fourier},
title = {Topological triviality of versal unfoldings of complete intersections},
url = {http://eudml.org/doc/74657},
volume = {34},
year = {1984},
}
TY - JOUR
AU - Damon, James
TI - Topological triviality of versal unfoldings of complete intersections
JO - Annales de l'institut Fourier
PY - 1984
PB - Association des Annales de l'Institut Fourier
VL - 34
IS - 4
SP - 225
EP - 251
AB - We obtain algebraic and geometric conditions for the topological triviality of versal unfoldings of weighted homogeneous complete intersections along subspaces corresponding to deformations of maximal weight. These results are applied: to infinite families of surface singularities in $C^4$ which begin with the exceptional unimodular singularities, to the intersection of pairs of generic quadrics, and to certain curve singularities.The algebraic conditions are related to the operation of adjoining powers, a generalization for complete intersections of a special form of the Thom-Sebastiani operation. A duality result is proven which relates the Jacobian algebra of $f$ being Gorenstein with $\widetilde{N}(F)^*$ being principal, i.e. generated by one element (here $F$ is obtained from $f$ by adjoining powers, and $\widetilde{N}(F)^*$ is the dual of the space of non-trivial infinitesimal deformations.
LA - eng
KW - exceptional unimodular singularities; Thom-Sebastiani operation; Jacobian algebra
UR - http://eudml.org/doc/74657
ER -
References
top- [1] V. I. ARNOLD, Local Normal Forms of Functions, Invent. Math., 35 (1976), 87-109. Zbl0336.57022MR57 #7646
- [2] J. W. BRUCE, A Stratification of the Space of Cubic Surfaces, Math. Proc. Camb. Phil. Soc., 87 (1980), 427-441. Zbl0434.58009MR81c:14022
- [3] J. W. BRUCE and P. J. GIBLIN, A Stratification of the Space of Plane Quartic Curves, Proc. London Math. Soc., (3) 42 (1981), 270-298. Zbl0403.14004MR82j:14022
- [3a] D. BUCHBAUM and D. EISENBUD, Algebraic structure for finite free resolutions and some structure theorems for ideals of codimension 3, Amer, J. Math., 99 (1977), 447-485. Zbl0373.13006
- [4] J. DAMON, Finite Determinacy and Topological Triviality I., Invent. Math., 62 (1980), 299-324. II. Sufficient Conditions and Topological Stability, Compositio Math., 47 (1982), 101-132. Zbl0489.58003MR82f:58018
- [5] J. DAMON, Classification of Discrete Algebra Types, preprint.
- [6] J. DAMON, Topological Properties of Real Simple Germs, Curves and the Nice Dimensions n > p, Math. Proc. Camb. Phil. Soc., 89 (1981), 457-472. Zbl0516.58013MR82g:58014
- [7] J. DAMON, Topological Properties of Discrete Algebra Type II : Real and Complex Algebras, Amer. Jour. Math., Vol. 101 No. 6 (1979), 1219-1248. Zbl0498.58005MR80k:58020
- [8] J. DAMON and A. GALLIGO, On the Hilbert-Samuel Partition for Stable Map-Germs to appear, Bull. Soc. Math. France. Zbl0547.58001
- [9] I. V. DOLGACHEV, Quotient Conical Singularities on Complex Surfaces, Funct. Anal. and Appl., 9 No. 2 (1975), 160-161. Zbl0295.14017
- [10] I. V. DOLGACHEV, Automorphic Forms and Quasihomogeneous Singularities, Funct. Anal. and Appl., 9 No. 2 (1975), 149-150. Zbl0321.14003MR58 #27958
- [11] M. GIUSTI, Classification des singularités isolées d'intersections complètes simples, C.R.A.S., Paris, t284 (17 Jan. 1977), 167-169. Zbl0346.32015MR55 #12948
- [12] G. M. GREUEL, Dualität in der lokalen Kohomologie Isolierter Singularitäten, Math. Ann., 250 (1980), 157-173. Zbl0417.14003MR82e:32009
- [13] G. M. GREUEL, Der Gauss-Manin Zusammenhang isolierter Singularitäten von vollständiger Durchschnitten, Math. Ann., 214 (1975), 235-266. Zbl0285.14002MR53 #417
- [14] G. M. GREUEL, Die Zahl der Spitzen und Die Jacobi-Algebra einer isolierten Hyperflächensingularität, Manuscripta Math., 21 (1977), 227-241. Zbl0359.32008MR57 #3117
- [15] G. M. GREUEL, and H. A. HAMM, Invarianten quasihomogener vollständiger Durchschnitte, Invent. Math., 49 (1978), 67-86. Zbl0394.32006MR80d:14003
- [16] H. KNÖRRER, Isolierte Singularitäten von Durchschitten Zweier Quadriken, thesis Bonn 1978, Bonner Mathematische Schriften 116.
- [17] H. KNÖRRER, Die Singularitäten vom typ D, Math. Ann., 251 (1980), 135-150. Zbl0423.32011
- [18] E. LOOIJENGA, Semi-universal Deformation of a Simple Elliptic Hypersurface Singularity I : Unimodularity, Topology, 16 (1977), 257-262. Zbl0373.32004MR56 #8565
- [19] J. MATHER, Stability of C∞-Mappings. III. Finitely Determined Map Germs, Publ. Math. I.H.E.S., 35 (1968), 127-146. IV. Classification of Stable Germs by R-algebras, Publ. Math. I.H.E.S., 37 (1979), 234-248. V. Transversality, Adv. in Math., 4 (1970), 301-336. VI. The Nice Dimensions Liverpool Singularities Symposium I, Springer Lecture Notes, 192 (1970), 207-253. Zbl0211.56105
- [20] J. MATHER, Stratification and Mappings, Dynamical Systems, M. Peixoto Ed., Academic Press (1973), 195-232. Zbl0286.58003MR51 #4306
- [21] J. MATHER, How to Stratify mappings and Jet Spaces, in : Singularités d'Applications Différentiables, Plans sur Bex-1975, Springer Lecture Notes 535, 128-176. Zbl0398.58008MR56 #13259
- [22] J. MATHER and J. DAMON, Book on singularities of mappings, in preparation.
- [23] H. C. PINKHAM, Groupes de monodromie des singularities unimodulaires exceptionnelles, C.R.A.S., Paris, t. 284 (1977), 1515-1518. Zbl0391.14005MR55 #12722
- [24] F. RONGA, Une Application Topologiquement Stable qui ne peut pas être approchée par une Application Différentiablement Stable, C.R.A.S., Paris, t. 287 (30 Oct. 1978), 779-782. Zbl0397.58009MR80f:58014
- [25] K. SAITO, Einfach-elliptische Singularitäten, Invent, Math., 23 (1974), 289-325. Zbl0296.14019MR50 #7147
- [26] R. THOM, Ensembles et Morphismes Stratifiés, Bull. Amer. Math. Soc., 75 (1969), 240-284. Zbl0197.20502MR39 #970
- [27] R. THOM and M. SEBASTIANI, Un résultat sur la monodromie, Invent. Math., 13 (1971), 90-96. Zbl0233.32025MR45 #2201
- [28] C. T. C. WALL, First Canonical Stratum, Jour. Lond. Math. Soc., Vol. 21 Pt 3 (1980), 419-433. Zbl0467.58008MR81k:58014
- [29] K. WIRTHMULLER, Universell Topologische Triviale Deformationen, Thesis, Univ. of Regensberg.
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.