Existence of star-products on exact symplectic manifolds

Marc De Wilde; P. B. A. Lecomte

Annales de l'institut Fourier (1985)

  • Volume: 35, Issue: 2, page 117-143
  • ISSN: 0373-0956

Abstract

top
It is shown that if a manifold admits an exact symplectic form, then its Poisson Lie algebra has non trivial formal deformations and the manifold admits star-products. The non-formal derivations of the star-products and the deformations of the Poisson Lie algebra of an arbitrary symplectic manifold are studied.

How to cite

top

De Wilde, Marc, and Lecomte, P. B. A.. "Existence of star-products on exact symplectic manifolds." Annales de l'institut Fourier 35.2 (1985): 117-143. <http://eudml.org/doc/74672>.

@article{DeWilde1985,
abstract = {It is shown that if a manifold admits an exact symplectic form, then its Poisson Lie algebra has non trivial formal deformations and the manifold admits star-products. The non-formal derivations of the star-products and the deformations of the Poisson Lie algebra of an arbitrary symplectic manifold are studied.},
author = {De Wilde, Marc, Lecomte, P. B. A.},
journal = {Annales de l'institut Fourier},
keywords = {Chevalley cohomology; Hochschild cohomology; Poisson Lie algebra},
language = {eng},
number = {2},
pages = {117-143},
publisher = {Association des Annales de l'Institut Fourier},
title = {Existence of star-products on exact symplectic manifolds},
url = {http://eudml.org/doc/74672},
volume = {35},
year = {1985},
}

TY - JOUR
AU - De Wilde, Marc
AU - Lecomte, P. B. A.
TI - Existence of star-products on exact symplectic manifolds
JO - Annales de l'institut Fourier
PY - 1985
PB - Association des Annales de l'Institut Fourier
VL - 35
IS - 2
SP - 117
EP - 143
AB - It is shown that if a manifold admits an exact symplectic form, then its Poisson Lie algebra has non trivial formal deformations and the manifold admits star-products. The non-formal derivations of the star-products and the deformations of the Poisson Lie algebra of an arbitrary symplectic manifold are studied.
LA - eng
KW - Chevalley cohomology; Hochschild cohomology; Poisson Lie algebra
UR - http://eudml.org/doc/74672
ER -

References

top
  1. [1] A. AVEZ, A. LICHNEROWICZA. DIAZ-MIRANDA, Sur l'algèbre de Lie des automorphismes infinitésimaux d'une variété symplectique, J. Diff. Geom., 9 (1974), 1-40. Zbl0283.53033MR50 #8602
  2. [2] F. BAYEN, M. FLATO, C. FRONSDAL, A. LICHNEROWICZ, D. STERNHEIMER, Deformation theory and quantization, Ann. of Physics, 111 (1978), 61-110 and 111-151. Zbl0377.53024MR58 #14737a
  3. [3] M. CAHEN, S. GUTT, Regular star-representation of Lie algebras, Lett. in Math. Physics, 6 (1982), 395-404. Zbl0522.58018MR84d:58025
  4. [4] M. DE WILDE, S. GUTT, P. LECOMTE, A propos des deuxième et troisième espaces de cohomologie de l'algèbre de Lie de Poisson d'une variété symplectique, Ann. Inst. Poincaré, 40, 1 (1984), 77-93. Zbl0547.53024MR86a:58036
  5. [5] M. DE WILDE, P. LECOMTE, Cohomology of the Lie algebra of smooth vector fields of a manifold, associated to the Lie derivative of smooth forms, J. Math. Pures and Appl., 62 (1983), 197-214. Zbl0481.58032MR85j:17017
  6. [6] M. DE WILDE, P. LECOMTE, Star-products on cotangent bundles, Lett. in Math. Phys., 7 (1983), 487-496. Zbl0526.58023
  7. [7] M. FLATO, A. LICHNEROWICZ, D. STERNHEIMER, C.R.A.S., Paris, 279 (1974), 877. Zbl0289.53031
  8. [8] S. GUTT, Second et troisième espaces de cohomologie différentiable de l'algèbre de Lie de Poisson d'une variété symplectique, Ann. Inst. Poincaré, 33-1 (1981), 1-31. Zbl0476.53021
  9. [9] A. LICHNEROWICZ, Déformations d'algèbres associées à une variété symplectique (les *v-produits), Ann. Inst. Fourier, 32-1 (1982), 157-209. Zbl0465.53025MR83k:58095
  10. [10] A. LICHNEROWICZ, Sur les algèbres formelles associées par déformation à une variété symplectique, Ann. Di Math., 123 (1980), 287-330. Zbl0441.53029MR82m:58030
  11. [11] O. M. NEROSLAVSKY, A. T. VLASSOV, Sur les déformations de l'algèbre des fonctions d'une variété symplectique, C.R.A.S., Paris, (1980). Zbl0471.58034
  12. [12] A. NUYENHUIS, R. RICHARDSON, Deformation of Lie algebra structures, J. of Math. and Mechanics, 17-1 (1967), 89-105. Zbl0166.30202
  13. [13] J. VEY, Déformation du crochet de Poisson d'une variété symplectique, Comm. Math. Helv., 50 (1975), 421-454. Zbl0351.53029MR54 #8765

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.